초록
본 연구에서는 마이크로 라만 스펙트럼을 이용한 급성 알코올성 간 손상과 만성 에탄올 간섬유증의 진단을 위해, 전처리 과정을 거친 스펙트럼으로부터 변별력 있는 피크를 추출하여 자동 분류기를 이용한 진단하는 방법을 살펴보았다. 전처리 단계에서는 기준선의 왜곡을 제거한 후 피크 보존에 유용한 Savitzky-Golay 필터를 이용하여 smoothing하였다. 전처리 후 급성 알코올성 간 손상과 만성 에탄올성 간섬유증을 구분할 수 있는 변별력 있는 스펙트럼 피크를 확인하고 이를 이용하여 MAP과 신경망으로 분류하였으며 실험 결과에 의하면 제안한 전처리 방법과 자동 분류기로 만성 에탄올성 간섬유증과 급성 알코올성 간 손상을 80% 이상 분류할 수 있었고, 이는 특징 벡터로 사용한 피크가 간 질병 진단에 사용될 수 있는 가능성을 보여준다고 할 수 있다.
In this paper, we evaluated the performance of the automatic classifier applied for the discrimination of acute alcoholic liver injury and chronic liver fibrosis. The classifier uses the discriminant peaks of the preprocessed Raman spectrum as a feature set. In preprocessing step, we subtract baseline and apply Savitzky-Golay smoothing filter which is known to be useful at preserving peaks. After identifying discriminant peaks from the spectra, we carried out the classification experiments using MAP and neural networks. According to the experimental results, the classifier shows the promising results to diagnosis alcoholic liver injury and chronic liver fibrosis. Classification results over 80% means that the peaks used as a feature set is useful for diagnosing liver disease.