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APPROXIMATELY ADDITIVE MAPPINGS IN
NON-ARCHIMEDEAN NORMED SPACES

Alireza Kamel Mirmostafaee

Abstract. We establish a new strategy to study the Hyers-Ulam-Rassias
stability of the Cauchy and Jensen equations in non-Archimedean normed
spaces. We will also show that under some restrictions, every function
which satisfies certain inequalities can be approximated by an additive
mapping in non-Archimedean normed spaces. Some applications of our
results will be exhibited. In particular, we will see that some results about
stability and additive mappings in real normed spaces are not valid in
non-Archimedean normed spaces.

1. Introduction

In 1940, S. M. Ulam [24] in the University of Wisconsin proposed the fol-
lowing question about the stability of homomorphisms:
Let (G1, ∗) be a group and (G2, ¦, d) be a metric group with the metric d.
Given ε > 0, does there exists a δε > 0 such that if a mapping h : G1 → G2

satisfies the inequality

d
(
h(x ∗ y), h(x) ¦ h(y)

)
< δ ∀x, y ∈ G1,

then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all
x ∈ G1?

In the next year, D. H. Hyers [8], gave a positive answer to the above question
for additive groups under the assumption that the groups are Banach spaces.
In 1978, Th. M. Rassias [21] proved a generalization of Hyers’ theorem for
additive mappings in the following way:

Theorem 1.1. Let f be an approximately additive mapping from a normed
vector space E into a Banach space E′, i.e., f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖r + ‖y‖r)
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for all x, y ∈ E, where ε and r are constants with ε > 0 and 0 ≤ r < 1. Then
the mapping L : E → E′ defined by L(x) = limn→∞ 2−nf(2nx) is the unique
additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε
2− 2r

‖x‖r

for all x ∈ E.

The result of Th. M. Rassias has influenced the development of what is
now called the Hyers–Ulam–Rassias stability theory for functional equations.
In 1994, a generalization of Rassias’ theorem was obtained by Găvruta [6]
by replacing the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y).
Several stability results have been recently obtained for various equations, also
for mappings with more general domains and ranges (see [3, 9, 10, 11]).

A Jensen equation is a equation of the form 2f(x+y
2 ) = f(x)+f(y), where f

is a mapping between linear spaces. It is easy to see that a mapping f : X → Y
between linear spaces with f(0) = 0 satisfies the Jensen equation if and only
if it is additive; cf. [20, Theorem 6]. The concept of stability for a functional
equation arises when we replace the functional equation by an equality which
acts as a perturbation of the equation. Stability of Jensen equation has been
studied at first by Kominek [15] and then by several other mathematicians; cf.
[6, 12, 16, 17, 18].

In 1897, Hensel [7] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many
nice applications [4, 13, 14, 19].

Definition 1.2. Let K be a field. A non-Archimedean absolute value on K is
a function | | : K→ R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,
(ii) |ab| = |a||b|,
(iii) |a+ b| ≤ max{|a|, |b|}.

The condition (iii) is called the strong triangle inequality. By (ii), we have
|1| = | − 1| = 1. Thus, by induction, it follows from (iii) that |n| ≤ 1 for each
integer n. We always assume in addition that | | is non trivial, i.e., that

(iv) there is an a0 ∈ K such that |a0| 6= 0, 1.

Definition 1.3. Let X be a linear space over a scalar field K with a non-
Archimedean non-trivial valuation | · |. A function || · || : X → R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||x|| = 0 if and only if x = 0;
(ii) ||x|| = |r|||x|| for all r ∈ K and x ∈ X;
(iii) the strong triangle inequality (ultrametric); namely,

||x+ y|| ≤ max{||x||, ||y||} (x, y ∈ X).

Then (X, || · ||) is called a non-Archimedean space.
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By a complete non-Archimedean space we mean one in which every Cauchy
sequence is convergent.

Remark 1.4. Thanks to the inequality

||xn − xm|| ≤ max {||xj+1 − xj || : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a
non- Archimedean space.

The most important examples of non-Archimedean spaces are p-adic num-
bers. A key property of p-adic numbers is that they do not satisfy the Archime-
dean axiom: for all x, y > 0, there exists an integer n such that x < ny.

Example 1.5. Let p be a prime number. For any nonzero rational number
a = pr m

n such that m and n are coprime to the prime number p, define the
p-adic absolute value |a|p = p−r. Then | | is a non-Archimedean norm on Q.
The completion of Q with respect to | | is denoted by Qp and is called the
p-adic number field.

Note that if p > 3, then |2n| = 1 in for each integer n.

In [1], the authors showed that if f : Qp → R is a continuous mapping such
that for some ε > 0, |f(x+ y)− f(x)− f(y)| < ε for all x, y ∈ Qp, then there
exists a unique additive mapping T : Qp → R such that |f(x) − T (x)| < ε
for all x ∈ Qp. In [23], the authors investigated stability of some functional
equations in non-Archimedean normed spaces. In this paper, we improve the
strategy used in [23].

In Section 2, we apply a new technique to prove stability of the Cauchy
equation in non-Archimedean normed spaces. We will exhibit some applications
of our results in these spaces. In particular, we will give non-Archimedean
version of Theorem 1.1. Furthermore, we give an example to show that the
exact version of Theorem 1.1 is not valid in non-Archimedean normed spaces.
The stability of the Jensen equation in non-Archimedean spaces is studied in
Section 3.

Rätz in [22] considered the stability of an inequality associated to Jordan-von
Neumann. The result of Rätz is improved by Fechner [5]. In [2], the authors
studied the generalized Hyers-Ulam stability of functional inequalities∣∣∣∣

∣∣∣∣f
(
x− y

2
− z

)
+ f(y) + 2f(z)

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ ,

||f(x) + f(y) + 2f(z)|| ≤
∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ .

Moreover, they have shown that if a function f : X → Y satisfies one of the
above inequalities, then f is additive. In Section 3, we will give an example to
show that this result is not valid in non-Archimedean normed spaces. We will
also consider the stability of these inequalities. More precisely, we will show
that for suitable function ϕ, each function f from a non-Archimedean linear
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space X to a complete non-Archimedean normed space Y which satisfies one
of the following inequalities∣∣∣∣

∣∣∣∣f
(
x− y

2
− z

)
+ f(y) + 2f(z)

∣∣∣∣
∣∣∣∣ ≤ max

{∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}
,

||f(x) + f(y) + 2f(z)|| ≤ max
{∣∣∣∣

∣∣∣∣f
(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}

can be approximated by a unique additive mapping T from X to Y .

2. Stability of Cauchy functional equation

Hereafter, we will assume that X linear space over a non-Archimedean field
K with a valuation | · | and Y is a complete non-Archimedean normed space
over K.

Let f : X → Y satisfy the functional equation

f(x+ y) = f(x) + f(y) (x, y ∈ X),

we call it a Cauchy equation. If for some function ϕ : X × X → [0,∞), the
mapping f : X → Y satisfies

(2.1) ||f(x+ y)− f(x)− f(y)|| ≤ ϕ(x, y)

for all x, y ∈ X, then f is called a ϕ-approximately Cauchy function.

Theorem 2.1. Let f : X → Y be a ϕ-approximately Cauchy function. If for
some natural number k ∈ K,

(2.2) lim
n→∞

|k|nϕ(k−nx, k−ny) = 0,

for each x, y ∈ X. Then there exists a unique additive mapping T : X → Y
such that

(2.3) ||f(x)− T (x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1}
for all x ∈ X, where

ψ(x) = max
{
ϕ(x, x), ϕ(x, 2x), . . . , ϕ(x, (k − 1)x)

}
(x ∈ X).

Proof. By induction on j, we will show that for each x ∈ X and j ≥ 2,

||f(jx)− jf(x)|| ≤ max{ϕ(x, x), . . . , ϕ(x, (j − 1)x)}.(2.4)

Put x = y in (2.1) to obtain

(2.5) ||f(2x)− 2f(x)|| ≤ ϕ(x, x), (x ∈ X).

This proves (2.4) for j = 2. Let (2.4) hold for some j > 2. Replacing y by jx
in (2.1), we see that

(2.6) ||f((j + 1)x)− f(x)− f(jx)|| ≤ ϕ(x, jx) (x ∈ X).

Since

f
(
(j + 1)x

)− (j + 1)f(x) = f
(
(j + 1)x

)− f(x)− f(jx) + f
(
jx

)− jf(x)
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for each x ∈ X, it follows from (2.6) and our induction hypothesis that (2.4)
holds for all j ≥ 2. In particular

||f(kx)− kf(x)|| ≤ ψ(x) (x ∈ X).(2.7)

Replacing x by k−nx in (2.7), by the inequality (2.2), we see that

(2.8) ||f(k−(n−1)x)− kf(k−nx)||) ≤ ψ(k−nx) (x ∈ X,n = 0, 1, 2, . . . ).

By multiplying both sides of the above inequality in |k|n−1, we get to
(2.9)
||kn−1f(k−(n−1)x)− knf(k−nx)|| ≤ |k|n−1ψ(k−nx) (x ∈ X,n = 0, 1, 2, . . . ).

By Remark 1.4 and the fact that limn→∞ |k|nψ(k−nx) = 0, the inequality
(2.9) shows that {knf

(
k−nx

)} is a Cauchy sequence in the complete non-
Archimedean space Y .

Let T (x) = limn→∞ knf
(
k−nx

)
. Since for each n ≥ 1 and x ∈ X,

||f(x)− knf(k−nx)|| =
∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

ki−1f(k−(i−1)x)− kif(k−ix)

∣∣∣∣∣

∣∣∣∣∣
≤ max{||ki−1f(k−(i−1)x)− kif(k−ix)||; 1 ≤ i ≤ n}
≤ max{|k|i−1ψ(k−ix) : 1 ≤ i ≤ n},

by taking limit as n→∞ of both sides of this inequality we see that

||f(x)− T (x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1} (x ∈ X).

Note that the maximum of the right hand side exists, since lim
n→∞

|k|nψ(knx) =

0. This proves (2.3). It follows from (2.1), (2.2) and (2.3) that for all x, y ∈ X,

||T (x+ y)− T (x)− T (y)||
= lim

n→∞
||knf

(
k−n(x+ y)

)− knf
(
k−nx

)− knf
(
k−ny

)||
≤ lim

n→∞
|k|nϕ(k−nx, k−ny) = 0.

Hence T is additive. Now if T ′ : X → Y is another additive map such that

||T ′(x)− f(x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1}
for all x ∈ X, then for each n ∈ N, x ∈ X we have

||T (x)− T ′(x)|| = ||knT (k−nx)− knT ′(k−nx)||
≤ |k|n max

{||T (k−nx− f(k−nx)||, ||f(k−nx− T ′(k−nx)||}

≤ max{|k|n+jψ(k−(n+j−1)x) : j ≥ 1}
= max{|k|j−1ψ(k−jx); j ≥ n}.

By our assumption, the last term of the above inequality tends to zero as n
tends to infinity. Hence T = T ′. ¤
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The following result can be regard as non-Archimedean version of Theo-
rem 1.1.

Corollary 2.2. Let X and Y be non-Archimedean normed spaces over K. If
Y is complete and for some 0 ≤ r < 1, f : X → Y satisfies the condition

||f(x+ y)− f(x)− f(y)|| ≤ θ(‖x‖r + ‖y‖r) ∀x, y ∈ X.
Then there exists a unique additive mapping T : X → Y such that

(2.10) ||f(x)− T (x)|| ≤ 2θ|k|−r||x||r,
where k is the first integer such that |k| < 1, we will assume that such an
element exists.

Proof. Let ϕ(x, y) = θ(‖x‖r + ‖y‖r). Since |k| < 1 and 1− r > 0,

lim
n→∞

|k|nϕ(k−nx, k−ny) = lim
n→∞

|k|n(1−r)ϕ(x, y) = 0 (x ∈ X).

Therefore the conditions of Theorem 2.1 are satisfied. It is easy to see that

ψ(x) = max{ϕ(x, x), . . . , ϕ(x, (k − 1)x)} = 2θ||x||r (x ∈ X)

and
max{|k|n−1ψ(k−nx) : n ≥ 1} = 2θ|k|−r||x||r (x ∈ X).

By Theorem 2.1 there is a unique additive mapping T : X → Y such that
(2.10) holds. ¤

However, the following example shows that the same result of Theorem 1.1
is not true in non-Archimedean normed spaces.

Example 2.3. Let p > 2 and f : Qp → Qp be defined by f(x) = 2,. Then for
ε = 1,

|f(x+ y)− f(x)− f(y)| = 1 ≤ ε (x, y ∈ Qp).

However neither {2−nf(2nx)} nor {2nf(2−nx)} is a Cauchy sequence. In fact,
by using the fact that |2| = 1, we have

|2−nf(2nx)− 2−(n+1)f(2(n+1)x)| = |2−n.2− 2−(n+1).2| = |2−n| = 1

and

|2nf(2−nx)− 2n+1f(2−(n+1)x)| = |2n.2− 2n+1.2| = |2n+1| = 1

for all x ∈ Qp and n ∈ N. Hence these sequences are not convergent in Qp.

Let f, g, h : X → Y satisfy the functional equation

f(x+ y) = g(x) + h(y)

for all x, y ∈ X, we call it a Pexider Cauchy equation. In the next result, we
discuss about the stability of Pexider Cauchy equation in non-Archimedean
spaces.
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Theorem 2.4. Let f, g, h : X → Y and ϕ : X × X → [0,∞) satisfy the
inequality

(2.11) ||f(x+ y)− g(x)− h(y)|| ≤ ϕ(x, y) (x, y ∈ X).

and (2.2) holds for some integer k ∈ K, then there exists a unique additive map
T : X → Y such that for all x ∈ X
(2.12) ||f(x)− f(0)− T (x)|| ≤ max{|k|n−1ψ(k−nx) : n ≥ 1}

(2.13) ||g(x)− g(0)− T (x)|| ≤ max{ϕ(x, 0), ϕ(0, 0), |k|n−1ψ(k−nx) : n ≥ 1}

(2.14) ||h(x)− h(0)− T (x)|| ≤ max{ϕ(0, x), ϕ(0, 0), |k|n−1ψ(k−nx) : n ≥ 1},
where

ψ(x) =max
{
ϕ(x, x), . . . , ϕ(x, (k − 1)x),

ϕ(0, x), . . . , ϕ(0, (k − 1)x),

ϕ(x, 0), . . . , ϕ((k − 1)x, 0), ϕ(0, 0)
}

for each x ∈ X.

Proof. Define f1 = f − f(0), g1 = g − g(0), h1 = h− h(0), then by (2.11)

(2.15) ||f1(x+ y)− g1(x)− h1(y)|| ≤ max
{
ϕ(x, y), ϕ(0, 0)

}
(x, y ∈ X).

Put y = 0 in (2.15) to obtain

(2.16) ||f1(x)− g1(x)|| ≤ max
{
ϕ(x, 0), ϕ(0, 0)

}
(x ∈ X).

Letting x = 0 in (2.15), we see that

(2.17) ||f1(y)− h1(y)|| ≤ max
{
ϕ(0, y), ϕ(0, 0)

}
(y ∈ X).

It follows from (2.15), (2.16) and (2.17) that for each x, y ∈ X,

(2.18) ||f1(x+ y)− f1(x)− f1(y)|| ≤ max
{
ϕ(0, 0), ϕ(x, y), ϕ(x, 0), ϕ(0, y)

}
.

Put
ϕ1(x, y) = max

{
ϕ(0, 0), ϕ(x, y), ϕ(x, 0), ϕ(0, y)

}
(x, y ∈ X).

Then limn→∞ |k|nϕ1(k−nx, k−ny) = 0. Thanks to Theorem 2.1, there exists a
unique additive mapping T : X → Y which satisfies the inequality (2.12).
By (2.12) and (2.16), we see that for each x ∈ X

||g(x)− g(0)− T (x)|| ≤ max
{
||g1(x)− f1(x)||, ||f1(x)− T (x)||

}

≤ max{ϕ(x, 0), ϕ(0, 0), |k|n−1ψ(k−nx) : n ≥ 1}
which proves (2.13). It follows from (2.12) and (2.17) that for each x ∈ X,

||h(x)− h(0)− T (x)|| ≤ max
{
||h1(x)− f1(x)||, ||f1(x)− T (x)||

}

≤ max{ϕ(0, x), ϕ(0, 0), |k|n−1ψ(k−nx) : n ≥ 1}
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hence (2.14) holds. ¤

Corollary 2.5. Let f, g, h : X → Y satisfy

||f(x+ y)− g(x)− h(y)|| ≤ θ(||x||r||y||s) (∀x, y ∈ X)

for some fixed θ > 0 and r, s ≥ 0 with r + s < 1. Let K contains positive
integers with valuation strictly less than one and k ∈ K be the first integer with
this property. Then there exists a unique additive mapping T : X → Y such
that for each x ∈ X,

||f(x)− f(0)− T (x)|| ≤ θ|k|−r−s||x||r+s,

||g(x)− g(0)− T (x)|| ≤ θ|k|−r−s||x||r+s,

||h(x)− h(0)− T (x)|| ≤ θ|k|−r−s||x||r+s.

Proof. Let ϕ(x, y) = θ(||x||r||y||s). Then for each x, y ∈ X, we have

lim
n→∞

|k|nϕ(k−nx, k−ny) = lim
n→∞

θ|k|n(1−r−s)||x||r||y||s = 0.

Therefore the conditions of Theorem 2.4 are fulfilled. By Theorem 2.4 and
straightforward computation one can find a unique additive mapping T : X →
Y such that (2.12), (2.13) and (2.14) hold. ¤

3. Hyers-Ulam-Rassias stability for Jensen equation

We start this section by considering the stability of the Jensen equation

2f
(
x+ y

2

)
= f(x) + f(y),

where f is a mapping from a vector spaces X to a non-Archimedean space Y .
Later, we will show that under some conditions on X and ϕ : X ×X ×X →
[0,∞) each function f : X → Y which satisfies one of the inequalities∣∣∣∣

∣∣∣∣f
(
x− y

2
− z

)
+ f(y) + 2f(z)

∣∣∣∣
∣∣∣∣ ≤ max

{∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}

||f(x) + f(y) + 2f(z)|| ≤ max
{∣∣∣∣

∣∣∣∣f
(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}

can be approximated by a suitable additive mapping from X to Y .

Theorem 3.1. Let ϕ : X ×X → [0,∞) and f : X → Y satisfy

(3.1)
∣∣∣∣
∣∣∣∣2f

(
x+ y

2

)
− f(x)− f(y)

∣∣∣∣
∣∣∣∣ ≤ ϕ(x, y) (x, y ∈ X).

If for some natural number k ∈ K
(3.2) lim

n→∞
|k|nϕ(k−nx, k−ny) = 0

then there exists a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1}



APPROXIMATELY ADDITIVE MAPPINGS 395

for all x ∈ X, where

ψ(x) = max
{
ϕ(x, x), ϕ(x, 2x), . . . , ϕ(x, (k − 1)x),

ϕ(2x, 0), ϕ(3x, 0), . . . , ϕ(kx, 0)
}

for all x ∈ X.

Proof. Let f1(x) = f(x)− f(0) for all x ∈ X. By (3.1),

(3.3)
∣∣∣∣
∣∣∣∣2f1

(
x+ y

2

)
− f1(x)− f1(y)

∣∣∣∣
∣∣∣∣ ≤ ϕ(x, y) (x, y ∈ X).

Replacing x by x+ y and y by 0 in (3.3), we see that
∣∣∣∣
∣∣∣∣2f1

(
x+ y

2

)
− f1(x+ y)

∣∣∣∣
∣∣∣∣ ≤ ϕ(x+ y, 0)) (x, y ∈ X).

It follows from (3.3) and the above inequality that

(3.4) ||f1(x+ y)− f1(x)− f1(y)|| ≤ max{ϕ(x, y), ϕ(x+ y, 0)} (x, y ∈ X).

Let ϕ1(x, y) = max{ϕ(x, y), ϕ(x+ y, 0)}. Then by (3.4),

(3.5) ||f1(x+ y)− f1(x)− f1(y)|| ≤ ϕ1(x, y) (x, y ∈ X).

By Theorem 2.1, we can find a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| = ||f1(x)− T (x)||
≤ max{|k|i−1ψ(k−ix) : i ≥ 1} (x ∈ X). ¤

Let f, g, h : X → Y satisfy the functional equation

2f
(
x+ y

2

)
= g(x) + h(y)

for all x, y ∈ X, we call it a Pexider Jensen equation.
The following example shows an application of Theorem 3.1 for stability of

a Pexider Jensen equation.

Example 3.2. Let p > 2 be a prime number, let X and Y be non-Archimedean
normed spaces over Qp and Y is complete. If f, g, h : X → Y satisfy the
inequality

(3.6)
∣∣∣∣
∣∣∣∣2f

(
x+ y

2

)
− g(x)− h(y)

∣∣∣∣
∣∣∣∣ ≤ θmax{||x||r, ||y||r} (x, y ∈ X)

for some θ > 0, 0 < r < 1 and all x, y ∈ X. Then there exists a unique additive
mapping T : X → Y such that for all x ∈ X,

(3.7) ||f(x)− f(0)− T (x)|| ≤ θpr||x||r,

(3.8) ||g(x)− g(0)− T (x)|| ≤ θpr||x||r,

(3.9) ||h(x)− h(0)− T (x)|| ≤ θpr||x||r.
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To prove this, let f1 = f − f(0), g1 = g − g(0) and h1 = h− h(0), then

(3.10)
∣∣∣∣
∣∣∣∣2f1

(
x+ y

2

)
− g1(x)− h1(y)

∣∣∣∣
∣∣∣∣ ≤ θmax{||x||r, ||y||r} (x, y ∈ X).

Put y = x in (3.10) to obtain

||2f1(x)− g1(x)− h1(x)|| ≤ θ||x||r,(3.11)
||2f1(y)− g1(y)− h1(y)|| ≤ θ||y||r.(3.12)

By changing the rule of x and y in (3.10), we see that

(3.13)
∣∣∣∣
∣∣∣∣2f1

(
x+ y

2

)
− g1(y)− h1(x)

∣∣∣∣
∣∣∣∣ ≤ θmax{||x||r, ||y||r} (x, y ∈ X).

Since |2| = 1, it follows from (3.10), (3.11), (3.12) and (3.13) that

(3.14)
∣∣∣∣
∣∣∣∣2f1

(
x+ y

2

)
− f1(y)− f1(x)

∣∣∣∣
∣∣∣∣ ≤ θmax{||x||r, ||y||r} (x, y ∈ X).

In Theorem 3.1, let k = p and ϕ(x, y) = θmax{||x||r, ||y||r}. Then

lim
n→∞

|p|nϕ(p−nx, p−ny) = lim
n→∞

θ

pn(1−r)
max{||x||r, ||y||r} = 0 (x, y ∈ X).

By Theorem 3.1, there is a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| ≤ max{|p|n−1ψ(p−nx) : n ≥ 1} (x ∈ X).

It is easy to see that in this case ψ(x) = θ||x||r, hence (3.7) holds. Put y = 0
in (3.10) to obtain

(3.15)
∣∣∣
∣∣∣2f1

(x
2

)
− g1(x)

∣∣∣
∣∣∣ ≤ θ||x||r (x ∈ X).

It follows from (3.7) and (3.15) that

||g(x)− g(0)− T (x)|||
≤ max

{∣∣∣
∣∣∣g1(x)− 2f1

(x
2

)∣∣∣
∣∣∣ ,

∣∣∣
∣∣∣2f1

(x
2

)
− 2T

(x
2

)∣∣∣
∣∣∣
}

(x ∈ X)

≤ max{θ||x||r, θpr||x||r} = θpr||x||r.
This proves (3.8). Similar argument shows that (3.9) holds.

In [2], the authors investigated the stability of inequalities related to Jordan-
von Neumann-type Jensen additive functional equations [22].
In the next results, we consider the following similar inequalities

∣∣∣∣
∣∣∣∣f

(
x− y

2
− z

)
+ f(y) + 2f(z)

∣∣∣∣
∣∣∣∣ ≤ max

{∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}
,

(3.16)

||f(x) + f(y) + 2f(z)|| ≤ max
{∣∣∣∣

∣∣∣∣f
(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ϕ(x, y, z)

}
(3.17)

in non-Archimedean normed linear spaces.
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Theorem 3.3. Let ϕ : X ×X ×X → [0,∞) and f : X → Y satisfy (3.16). If
for some natural number k ∈ K with |k| < 1

(3.18) lim
n→∞

|k|nϕ(k−nx, k−ny, k−nz) = 0 (x, y, z ∈ X),

then there exists a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1}
for all x ∈ X, where

ψ(x) = max
{
ϕ1(x, x), ϕ1(x, 2x), . . . , ϕ1(x, (k − 1)x),

ϕ1(2x, 0), ϕ1(3x, 0), . . . , ϕ(kx, 0)
}

and

ϕ1(x, y) = max
{
||f(0)||, ϕ(x, x,−x), ϕ

(
x, y,

−x− y

2

)
,

ϕ

(
x+ y

2
,
x+ y

2
,
−x− y

2

)}

for all x ∈ X.

Proof. Put y = x and z = −x in (3.16) to obtain

(3.19) ||2f(x) + 2f(−x)|| ≤ max
{||f(0)||, ϕ(x, x,−x)} (x ∈ X).

Replacing z by −x−y
2 in (3.16), we get

(3.20)
∣∣∣∣
∣∣∣∣f(x) + f(y) + 2f

(−x− y

2

)∣∣∣∣
∣∣∣∣ ≤ max

{
||f(0)||, ϕ

(
x, y,

−x− y

2

)}

for all x, y ∈ X. By (3.19) and (3.20) for all x, y ∈ X, we have

(3.21)

∣∣∣∣
∣∣∣∣2f

(
x+ y

2

)
− f(x)− f(y)

∣∣∣∣
∣∣∣∣

≤ max
{
||f(0)||, ϕ

(
x, y,

−x− y

2

)
, ϕ

(
x+ y

2
,
x+ y

2
,
−x− y

2

)}
.

Since |k| < 1, limn→∞ |k|n||ϕ(0)|| = 0. Therefore by (3.18),

lim
n→∞

|k|nϕ1(k−nx, k−ny) = 0.

Thanks to Theorem 3.1, we get to the desire result. ¤
Remark 3.4. In [2] it is shown that if a function f satisfies the inequality∣∣∣∣

∣∣∣∣f
(
x− y

2
− z

)
+ f(y) + 2f(z)

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ ,

then f is additive. Note that this result is not valid for non-Archimedean
normed spaces. To see this define f : Qp → Qp for prime number p > 2, by
f(x) = 4, then∣∣∣∣f

(
x− y

2
− z

)
+ f(y) + f(z)

∣∣∣∣ = 1 =
∣∣∣∣f

(
x+ y

2
+ z

)∣∣∣∣ (x, y, z ∈ Qp).
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However f is not additive.

Theorem 3.5. Let ϕ : X ×X ×X → [0,∞) and f : X → Y satisfy (3.17). If
for some natural number k ∈ K with |k| < 1,

(3.22) lim
n→∞

|k|nϕ(k−nx, k−ny, k−nz) = 0 (x, y, z ∈ X),

then there exists a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| ≤ max{|k|i−1ψ(k−ix) : i ≥ 1}
for all x ∈ X, where

ψ(x) = max {ϕ1(x, x), ϕ1(x, 2x), . . . , ϕ1(x, (k − 1)x),

ϕ1(2x, 0), ϕ1(3x, 0), . . . , ϕ(kx, 0)}
and

ϕ1(x, y) = max
{
||2f(0)||, ϕ

(
x, y,

−x− y

2

)
, ϕ

(
x+ y

2
,
x+ y

2
,
x+ y

2

)}

for all x ∈ X.

Proof. Let z = −x−y
2 in (3.17) to obtain

(3.23)

∣∣∣∣
∣∣∣∣f(x) + f(y) + 2f

(−x− y

2

)∣∣∣∣
∣∣∣∣

≤ max
{
||2f(0)||, ϕ

(
x, y,

−x− y

2

)}
(x, y ∈ X).

Replacing x, y by x+y
2 and z by −x−y

2 in (3.17), we get
(3.24)∣∣∣∣
∣∣∣∣2f

(
x+ y

2

)
+2f

(−x− y

2

)∣∣∣∣
∣∣∣∣ ≤ max

{
||2f(0)||, ϕ

(
x+ y

2
,
x+ y

2
,
−x− y

2

)}

for all x, y ∈ X. By (3.23) and (3.24) for all x, y ∈ X, we have∣∣∣∣
∣∣∣∣2f

(
x+ y

2

)
− f(x)− f(y)

∣∣∣∣
∣∣∣∣

≤ max
{
||2f(0)||, ϕ

(
x, y,

−x− y

2

)
, ϕ

(
x+ y

2
,
x+ y

2
,
−x− y

2

)}
.

Similar argument used in the end of Theorem 3.3 can be used to prove the
result. ¤
Example 3.6. Let X and Y are normed linear space over Qp, where p > 2 is
a prime number. If Y is complete and f : X → Y satisfies the condition

(3.25) ||f(x) + f(y) + 2f(z)|| ≤ max
{∣∣∣∣

∣∣∣∣f
(
x+ y

2
+ z

)∣∣∣∣
∣∣∣∣ , ε

}

for each x, y, z in X, then (3.17) for ϕ(x, y, z) = ε holds. Since

lim
n→∞

|p|nϕ(k−nx, k−ny, k−nz) = lim
n→∞

ε

pn
= 0
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for all x, y, z ∈ X and

ψ(x) = max{|2|||f(0)||, ε} = max{||f(0)||, ε}
for all x ∈ X. Straightforward computation, using Theorem 3.5, show that
there is a unique additive mapping T : X → Y such that

||f(x)− f(0)− T (x)|| ≤ max{||f(0)||, ε}
p

(x ∈ X).
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