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ON HÖLDER CONTINUOUS UNIVERSAL PRIMITIVES

Gerd Herzog and Roland Lemmert

Abstract. We prove a universality theorem from which we deduce the
existence of Hölder continuous universal primitives in the sense of Marc-
inkiewicz.

1. Introduction

For p ∈ (0, 1) let Lp([0, 1]) denote the F -space of all measurable functions
g : [0, 1] → R with ∫ 1

0

|g(x)|p dx < ∞
(modulo sets of Lebesgue measure zero), endowed with the metric

d(g1, g2) =
∫ 1

0

|g1(x)− g2(x)|p dx.

In generalization of Marcinkiewicz’s very famous result on the existence of
universal primitives [10] it is known [6], [7] that to each sequence (λn) of positive
numbers with limit 0, there exists a continuous function f , such that to each
function g ∈ Lp([0, 1]) there is a subsequence of

(
f(x + λn)− f(x)

λn

)

with limit g in Lp([0, 1]) (there is no such function f if p ≥ 1, see [1], [3]). In this
paper we will prove a universality theorem from which we will deduce that f
may be chosen to be Hölder continuous for each exponent α ∈ (0, 1). Of course
there are no Lipschitz continuous universal primitives since each Lipschitz con-
tinuous function is differentiable almost everywhere. On the other hand there
are universal primitives in the sense of Marcinkiewicz with an amazing amount
of points of smoothness [8].

For a comprehensive presentation of generalizations of Marcinkiewicz’s result
we refer to [5] and the references given there.
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2. Universal elements

We will make use of the Universality Criterion of Grosse-Erdmann [5, Th. 1]:
Let X, Y be topological spaces with X a Baire space and Y second countable.

Let Tj : X → Y (j ∈ J) be a family of continuous mappings. An element x ∈ X
is called universal for this family if {Tjx : j ∈ J} is dense in Y . Let U denote
the set of all universal elements.

Proposition 1 (Universality Criterion). Equivalent are:
(1) The set U is a dense Gδ-subset of X.
(2) The set U is dense in X.
(3) The set {(x, Tjx) : x ∈ X, j ∈ J} is dense in X × Y .

Now, assume that (X, (pk)k∈N) is a Fréchet space with an increasing sequence
of semi norms (pk)k∈N, and that (Y, d) is a separable topological vector space
with invariant metric d. Let Tn : X → Y (n ∈ N) be sequence of continuous
linear operators. Let A : D(A) → Y be the linear operator defined by

Ax = lim
n→∞

Tnx

on
D(A) = {x ∈ X : (Tnx) is convergent}.

The following criterion will turn out to be useful to prove that U is not empty.

Proposition 2. Under the settings above assume that

(1) {Ax : x ∈ D(A), pk(x) ≤ 1}
is dense in Y for each k ∈ N. Then U ∩D(A) is a dense Gδ-subset of D(A).

Proof. Fix k ∈ N. Since D(A) is a subspace of X and A is linear, (1) implies
that

{Ax : x ∈ D(A), pk(x) ≤ ε}
is dense in Y for each ε > 0. Next we prove that

{Ax : x ∈ D(A), pk(x− x0) ≤ ε}
is dense in Y for each ε > 0 and each x0 ∈ D(A):

Fix y ∈ Y and let δ > 0. Choose x1 ∈ D(A) with pk(x1 − x0) ≤ ε/2, and
x ∈ D(A) with pk(x) ≤ ε/2 and d(Ax, y −Ax1) ≤ δ. Then

pk((x + x1)− x0) ≤ pk(x) + pk(x1 − x0) ≤ ε,

and
d(A(x + x1), y) = d(Ax, y −Ax1) ≤ δ.

Now, let x0 ∈ D(A), y0 ∈ Y , k ∈ N and ε > 0. We find x ∈ D(A) such that

pk(x− x0) ≤ ε, d(Ax, y0) ≤ ε/2.

By choosing n ∈ N such that d(Tnx,Ax) ≤ ε/2 we obtain d(Tnx, y0) ≤ ε. Thus

{(x, Tnx) : x ∈ D(A), n ∈ N}
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is dense in D(A)× Y . Application of Proposition 1 completes the proof. ¤

3. The Gelfand space of Hölder continuous functions

For α ∈ (0, 1) let Cα([0, 1]) denote the Banach space of all continuous func-
tions f : [0, 1] → R with

nα(f) := sup
x6=y

|f(x)− f(y)|
|x− y|α < ∞

endowed with the norm |f(0)|+ nα(f), that is, the space of Hölder continuous
functions with exponent α. By C1([0, 1]) we denote the space of all continuously
differentiable functions f : [0, 1] → R, and C([0, 1]) is the Banach space of all
continuous functions f : [0, 1] → R endowed with the maximum norm ‖ · ‖∞.

By Λα([0, 1]), α ∈ (0, 1), we denote the space of all f ∈ Cα([0, 1]) with the
property

∀ε > 0 ∃δ > 0 : |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε|x− y|α.

It is known that Λα([0, 1]) is a closed subspace of Cα([0, 1]), and

(2) C1([0, 1]) ⊆ Cβ([0, 1]) ⊆ Λα([0, 1]) ⊆ Cα([0, 1]) ⊆ C([0, 1])

for 0 < α < β < 1, compare [2, Ch.IV-23]. Moreover C1([0, 1]) is a dense
subset of Λα([0, 1]) for each α ∈ (0, 1). This can easily be checked for example
by means of Friedrich’s mollifiers.

Let (αk)k∈N be a strictly increasing sequence in (0, 1) with limit 1. We
consider the Gelfand space

C1−([0, 1]) :=
⋂

α∈(0,1)

Cα([0, 1]) =
⋂

k∈N
Cαk([0, 1])

endowed with the sequence of norms pk(f) = |f(0)|+nαk
(f). Clearly C1−([0,1])

is a Fréchet space, and by means of (2)

C1−([0, 1]) =
⋂

α∈(0,1)

Λα([0, 1]),

which proves that C1([0, 1]) is a dense subset of C1−([0, 1]).

4. A universality theorem

The following result is a devolvement of [6, Th. 1] to Hölder continuous
functions.

Theorem 1. Let p ∈ (0, 1) and let Tn : C1−([0, 1]) → Lp([0, 1]) be a sequence
of continuous linear operators such that

Tnf → f ′ (n →∞)

in Lp([0, 1]) for each f ∈ C1([0, 1]). Then the set of functions f ∈ C1−([0, 1])
such that

{Tn(f) : n ∈ N} is dense in Lp([0, 1])
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is a dense Gδ subset of C1−([0, 1]).

Proof. We will apply Proposition 2. Note that under the assumptions of The-
orem 1

Af = f ′ (f ∈ C1([0, 1]) ⊆ D(A)), D(A) = C1−([0, 1]).

Thus, we are done if we can prove that for each α ∈ (0, 1)

{f ′ : f ∈ C1([0, 1]), |f(0)|+ nα(f) ≤ 1}
is dense in Lp([0, 1]). Since C([0, 1]) is dense in Lp([0, 1]), see [4], it is sufficient
to approximate continuous functions.

Fix α ∈ (0, 1), and let g ∈ C([0, 1]) and ε > 0.
First, we choose ϕ ∈ C∞(R, [0,∞)) with supp(ϕ) ⊆ [0, 1] and

∫ 1

0

ϕ(t) dt = 1.

Since p ∈ (0, 1) we can arrange in addition

(‖g‖∞)p

∫ 1

0

(ϕ(t))p dt ≤ ε.

Next, choose m ∈ N such that
(

4
m

)1−α

‖g‖∞(1 + ‖ϕ‖∞)α ≤ 1.

Set

γk := m

∫ (k+1)/m

k/m

g(s) ds (k = 0, . . . , m− 1).

We have

βk :=
∫ (k+1)/m

k/m

∣∣∣∣g(t)− γkϕ

(
m

(
t− k

m

))∣∣∣∣ dt

≤ 1
m

(‖g‖∞ + |γk|) ≤ 2‖g‖∞
m

(k = 0, . . . , m− 1).

Define v, w : [0, 1] → R by

v(x) = −γkϕ

(
m

(
x− k

m

))
(x ∈ [k/m, (k + 1)/m], k = 0, . . . ,m− 1),

and

w(x) =
∫ x

0

g(t) + v(t) dt (x ∈ [0, 1]).

Note that supp(ϕ) ⊆ [0, 1] implies that v is continuous (even in C∞), hence
w ∈ C1([0, 1]), and also

‖v‖∞ ≤ ‖g‖∞‖ϕ‖∞.
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Next we show that w(k/m) = 0 (k = 0, . . . ,m− 1). We have w(0) = 0, and

w((k + 1)/m)− w(k/m) =
∫ (k+1)/m

k/m

g(t) + v(t) dt

=
γk

m
− γk

m

∫ (k+1)/m

k/m

mϕ

(
m

(
t− k

m

))
dt = 0,

as ∫ (k+1)/m

k/m

mϕ

(
m

(
t− k

m

))
dt = 1.

Let x ∈ [k/m, (k + 1)/m]. Then

|w(x)| = |w(x)− w(k/m)| ≤
∫ (k+1)/m

k/m

|g(t) + v(t)| dt = βk ≤ 2‖g‖∞
m

.

Thus, for x, y ∈ [0, 1], x 6= y

|w(x)− w(y)|
|x− y|α ≤ min

{
4‖g‖∞

m

1
|x− y|α , (‖g‖∞ + ‖v‖∞)|x− y|1−α

}

≤ min
{

4‖g‖∞
m

1
|x− y|α , ‖g‖∞(1 + ‖ϕ‖∞)|x− y|1−α

}
.

For each choice of c1, c2 ∈ [0,∞) we have the inequality

min
{

c1

|x− y|α , c2|x− y|1−α

}
≤ c1−α

1 cα
2 (x, y ∈ [0, 1], x 6= y).

We conclude

|w(x)− w(y)|
|x− y|α ≤

(
4‖g‖∞

m

)1−α (
‖g‖∞(1 + ‖ϕ‖∞)

)α

=
(

4
m

)1−α

‖g‖∞
(
1 + ‖ϕ‖∞

)α

≤ 1.

Since w(0) = 0 we have |w(0)|+ nα(w) ≤ 1.
Next,

d(g, w′) =
∫ 1

0

|g(t)− w′(t)|p dt =
∫ 1

0

|v(t)|p dt

=
m−1∑

k=0

|γk|p
∫ (k+1)/m

k/m

∣∣∣∣ϕ
(

m

(
t− k

m

))∣∣∣∣
p

dt

=

(
m−1∑

k=0

|γk|p
m

)∫ 1

0

|ϕ(t)|p dt

≤
(

m−1∑

k=0

(‖g‖∞)p

m

) ∫ 1

0

|ϕ(t)|p dt = (‖g‖∞)p

∫ 1

0

|ϕ(t)|p dt ≤ ε.
¤
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5. Universal primitives in C1−([0, 1])

Let (λn)∞n=1 be any sequence with |λn| ∈ (0, 1] and limit 0. Theorem 1
applies to difference quotients: For f ∈ C1−([0, 1]) let fe : [−1, 2] → R be the
extension of f defined by

fe(x) =





2f(1)− f(2− x) (x ∈ (1, 2]),
f(x) (x ∈ [0, 1]),

2f(0)− f(−x) (x ∈ [−1, 0)),

and let Tn : C1−([0, 1]) → Lp([0, 1]) be defined by

(Tnf)(x) =
fe(x + λn)− fe(x)

λn
.

By standard reasoning each Tn is continuous and Tnf → f ′ in Lp([0, 1]) (even
in C([0, 1])) for each f ∈ C1([0, 1]). Thus, the set of functions f ∈ C1−([0, 1])
such that

{Tnf : n ∈ N} is dense in Lp([0, 1])
is a dense Gδ subset of C1−([0, 1]).

6. Further applications

As in [6] we can apply Theorem 1 to the derivatives of Bernstein or Lagrange
polynomials.

For example, consider

(Bnf)(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

Theorem 1 applies to the operators Tn : C1−([0, 1]) → Lp([0, 1]), Tnf = (Bnf)′

(n ∈ N), compare [9, Sec.1.8]. Thus, the set of functions f ∈ C1−([0, 1]) such
that

{(Bnf)′ : n ∈ N} is dense in Lp([0, 1])
is a dense Gδ subset of C1−([0, 1]).
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[10] J. Marcinkiewicz, Sur les nombres dérivés, Fundam. Math. 24 (1945), 305–308.

Gerd Herzog
Institut für Analysis
Universität Karlsruhe
D-76128 Karlsruhe, Germany
E-mail address: Gerd.Herzog@math.uni-karlsruhe.de

Roland Lemmert
Institut für Analysis
Universität Karlsruhe
D-76128 Karlsruhe, Germany
E-mail address: Roland.Lemmert@math.uni-karlsruhe.de


