ON RICCI CURVATURES OF LEFT INVARIANT METRICS ON SU(2)

Yong-Soo Pyo*, Hyun Woong Kim, and Joon-Sik Park

ABSTRACT. In this paper, we shall prove several results concerning Ricci curvature of a Riemannian manifold (M,g):=(SU(2),g) with an arbitrary given left invariant metric g.

First of all, we obtain the maximum (resp. minimum) of $\{r(X) := Ric(X,X) \mid ||X||_g = 1, X \in \mathfrak{X}(M)\}$, where Ric is the Ricci tensor field on (M,g), and then get a necessary and sufficient condition for the Levi-Civita connection ∇ on the manifold (M,g) to be projectively flat. Furthermore, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of unit vector field X.

1. Introduction

One of the present authors ([5]) completely classified harmonic inner automorphisms of (SU(2), g) with arbitrary given left invariant metric g onto (SU(2), g).

In general, for the Ricci tensor field Ric on a Riemannian manifold (M, g),

$$r(X) = \frac{Ric(X,X)}{||X||_g^2}, \quad (X \neq 0)$$

is said to be the Ricci curvature of (M,g) with respect to $X \in T_pM$, $(p \in M)$. In this paper, we completely estimate the Ricci curvatures on (SU(2),g) with an arbitrary given left invariant Riemannian metric g (Theorem 2.3). And then, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of nonzero vector X (Theorem 2.5). In general, the Levi-Civita connection for the metric g of a constant curvature space (M,g) is projectively flat, but the converse is not true. We get a necessary and sufficient condition for the Levi-Civita connection ∇ for g on (SU(2),g) with a left invariant Riemannian metric g to

Received May 7, 2008; Revised December 26, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 53C07,\ 53C25.$

Key words and phrases. Ricci curvature, left invariant metric, projectively flat.

^{*}This work was supported by Pukyong National University Research Fund in 2007(PK-2007-012).

be projectively flat (Proposition 2.6). Using these results, we get the following (Theorem 2.8):

On (SU(2), g) with a left invariant metric g, the following are equivalent;

- (a) The Levi-Civita connection for the metric g is projectively flat.
- (b) (SU(2), g) is a space of constant curvature.
- (c) The metric g is the bi-invariant metric which is induced by the Killing form on the simple Lie algebra $\mathfrak{su}(2)$.
- (d) For an arbitrary given nonzero vector $X \in T_xSU(2)$ $(x \in SU(2))$, the Ricci curvature r(X) with respect to X is $\frac{1}{4}$.

We would like to thank the referees for pointing out mistakes in the original manuscript.

2. Ricci curvatures of left invariant metrics on SU(2)

Let M denote the Lie group SU(2) and let $\mathfrak{su}(2)$ be the Lie algebra of all left invariant vector fields on SU(2). The Killing form B of the simple Lie algebra $\mathfrak{su}(2)$ satisfies

$$B(X,Y) = 4 \operatorname{Trace}(XY), \quad (X,Y \in \mathfrak{su}(2)).$$

We define an inner product \langle , \rangle_0 on $\mathfrak{su}(2)$ by

$$(2.1) \langle X, Y \rangle_0 := -B(X, Y), \quad (X, Y \in \mathfrak{su}(2)).$$

Then the inner product \langle , \rangle_0 determines a left invariant metric g_0 on M. The following lemma is known ([8, Lemma 1.1, p. 154]).

Lemma 2.1. Let g be an arbitrary left invariant Riemannian metric on M and let \langle , \rangle be an inner product on $\mathfrak{su}(2)$ defined by

$$\langle X, Y \rangle := g_e \langle X_e, Y_e \rangle, \quad (X, Y \in \mathfrak{su}(2)),$$

where e is the identity matrix of M. Then there exists an orthonormal basis $\{X_1, X_2, X_3\}$ of $\mathfrak{su}(2)$ with respect to $\langle \ , \ \rangle$ such that

(2.2)
$$\begin{cases} [X_1, X_2] = \frac{1}{\sqrt{2}} X_3, & [X_2, X_3] = \frac{1}{\sqrt{2}} X_1, \\ [X_3, X_1] = \frac{1}{\sqrt{2}} X_2, & \langle X_i, X_j \rangle = \delta_{ij} a_i, \end{cases}$$

where a_i (i = 1, 2, 3) are positive constant real numbers determined by the given left invariant Riemannian metric g on M.

We fix an orthonormal basis $\{X_1, X_2, X_3\}$ of $\mathfrak{su}(2)$ with respect to g_0 with the property (2.2) in Lemma 2.1 and denote by $g_{(a_1,a_2,a_3)}$ the left invariant Riemannian metric on M which is determined by positive real numbers a_1, a_2, a_3 in Lemma 2.1. Moreover, we normalize left invariant Riemannian metrics on M by putting $a_3=1$. We denote by $g_{(a_1,a_2,1)}$, or simply by $g_{(a_1,a_2)}$, the left invariant Riemannian metric which is determined by positive real numbers $a_1, a_2, a_3=1$.

In general, the Riemannian connection ∇ for the Riemannian metric g on a Riemannian manifold (M,g) is given by:

(2.3)
$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y])$$

for $X, Y, Z \in \mathfrak{X}M$), and the curvature tensor field R is:

$$(2.4) R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}, \quad (X,Y \in \mathfrak{X}(M)).$$

For the orthonormal basis $\{X_1,X_2,X_3\}$ of $\mathfrak{su}(2)$ with respect to $\langle\;,\;\rangle_0=-B$ in Lemma 2.1, if we put

$$Y_1 := \frac{1}{\sqrt{a_1}} X_1, \quad Y_2 := \frac{1}{\sqrt{a_2}} X_2, \quad Y_3 := X_3,$$

then $\{Y_1, Y_2, Y_3\}$ is an orthonormal frame basis of $(M, g_{\langle , , \rangle} := g_{(a_1, a_2)})$. From (2.2) we have

$$(2.5) \qquad [Y_1,Y_2] = \frac{1}{\sqrt{2a_1a_2}}Y_3, \quad [Y_2,Y_3] = \frac{\sqrt{a_1}}{\sqrt{2a_2}}Y_1, \quad [Y_3,Y_1] = \frac{\sqrt{a_2}}{\sqrt{2a_1}}Y_2.$$

By virtue of (2.3) and (2.5), we get

$$(2.6) \begin{cases} \nabla_{Y_1} Y_2 = c^{-1}(-a_1 + a_2 + 1)Y_3, & \nabla_{Y_2} Y_1 = c^{-1}(-a_1 + a_2 - 1)Y_3, \\ \nabla_{Y_2} Y_3 = c^{-1}(a_1 - a_2 + 1)Y_1, & \nabla_{Y_3} Y_2 = c^{-1}(-a_1 - a_2 + 1)Y_1, \\ \nabla_{Y_3} Y_1 = c^{-1}(a_1 + a_2 - 1)Y_2, & \nabla_{Y_1} Y_3 = c^{-1}(a_1 - a_2 - 1)Y_2, \\ \nabla_{Y_1} Y_1 = \nabla_{Y_2} Y_2 = \nabla_{Y_3} Y_3 = 0, \end{cases}$$

where $c := \sqrt{8a_1a_2}$. Furthermore, from (2.4) and (2.6), we obtain

$$\begin{cases} R(Y_1, Y_2)Y_1 = c^{-2}\{(3 - 2(a_1 + a_2) - (a_1 - a_2)^2\}Y_2, \\ R(Y_1, Y_2)Y_2 = c^{-2}\{-3 + 2(a_1 + a_2) + (a_1 - a_2)^2\}Y_1, \\ R(Y_1, Y_3)Y_1 = c^{-2}\{3a_2^2 - 2(1 + a_1)a_2 - (1 - a_1)^2\}Y_3, \\ R(Y_1, Y_3)Y_3 = c^{-2}\{-3a_2^2 + 2(1 + a_1)a_2 + (1 - a_1)^2\}Y_1, \\ R(Y_2, Y_3)Y_2 = c^{-2}\{3a_1^2 - 2(a_2 + 1)a_1 - (a_2 - 1)^2\}Y_3, \\ R(Y_2, Y_3)Y_3 = c^{-2}\{-3a_1^2 + 2(a_2 + 1)a_1 + (a_2 - 1)^2\}Y_2, \\ R(Y_1, Y_2)Y_3 = R(Y_2, Y_3)Y_1 = R(Y_3, Y_1)Y_2 = 0. \end{cases}$$

The Ricci tensor field Ric, of type (0,2), is defined by

(2.8)
$$Ric(Y,Z) = \operatorname{trace}\{X \mapsto R(X,Y)Z\}.$$

By help of (2.7) and (2.8), we obtain

(2.9)
$$\begin{cases} Ric(Y_1, Y_1) = \frac{1}{4a_1a_2} \{a_1^2 - (a_2 - 1)^2\}, \\ Ric(Y_2, Y_2) = \frac{1}{4a_1a_2} \{a_2^2 - (a_1 - 1)^2\}, \\ Ric(Y_3, Y_3) = \frac{1}{4a_1a_2} \{1 - (a_1 - a_2)^2\}, \\ Ric(Y_i, Y_j) = 0 \text{ if } i \neq j. \end{cases}$$

To simplify notation, we put $Ric(Y_i, Y_j) = R_{ij}$. Then, from (2.9) we get:

Lemma 2.2. On $(M, g_{\langle , \rangle}) := g_{(a_1, a_2)}$, we have the following equations;

$$\begin{cases}
R_{22} - R_{11} = \frac{1}{2a_1 a_2} (a_2 - a_1)(a_2 + a_1 - 1), \\
R_{33} - R_{22} = \frac{1}{2a_1 a_2} (1 - a_2)(a_2 - a_1 + 1), \\
R_{11} - R_{33} = \frac{1}{2a_1 a_2} (1 - a_1)(a_2 - a_1 - 1).
\end{cases}$$

For the Ricci curvature tensor Ric of (0,2)-type in a Riemannian manifold (M,g) and a nonzero vector $v_p \in T_pM$,

$$r(v_p) := \frac{Ric(v_p, v_p)}{||v_p||_q^2}$$

is said to be the *Ricci curvature* of (M,g) with respect to v_p . Now, we have from (2.9) and Lemma 2.2.

Theorem 2.3. Let X be an arbitrary nonzero vector field which is left invariant on SU(2). Then the Ricci curvatures r(X) is completely estimated as follows:

(a)
$$r(Y_1) \le r(X) \le r(Y_3)$$
 (resp. $r(Y_1) \le r(X) \le r(Y_2)$) if and only if

$$(a_2 - a_1)(a_2 + a_1 - 1) \ge 0$$
 and $(a_2 - 1)(a_2 - a_1 + 1) \le 0$
(resp. $(a_1 - 1)(a_2 - a_1 - 1) \ge 0$ and $(a_2 - 1)(a_2 - a_1 + 1) \ge 0$),

(b)
$$r(Y_2) \le r(X) \le r(Y_3)$$
 (resp. $r(Y_2) \le r(X) \le r(Y_1)$) if and only if

$$(a_2 - a_1)(a_2 + a_1 - 1) \le 0$$
 and $(a_1 - 1)(a_2 - a_1 - 1) \ge 0$
(resp. $(a_2 - 1)(a_2 - a_1 + 1) \le 0$ and $(a_1 - 1)(a_2 - a_1 - 1) \le 0$),

(c)
$$r(Y_3) < r(X) < r(Y_2)$$
 (resp. $r(Y_3) < r(X) < r(Y_1)$) if and only if

$$(a_1-1)(a_2-a_1-1) \le 0$$
 and $(a_2-a_1)(a_2+a_1-1) \ge 0$
(resp. $(a_2-1)(a_2-a_1+1) \ge 0$ and $(a_2-a_1)(a_2+a_1-1) \le 0$).

By help of (2.9), the scalar curvature $S = \sum_{i=1}^{3} R_{ii}$ on $(SU(2), g_{(a_1,a_2)})$ is given by

(2.10)
$$S = -\frac{1}{4a_1a_2}(a_2 - a_1 - 2\sqrt{a_1} - 1)(a_2 - a_1 + 2\sqrt{a_1} - 1).$$

From (2.10), we get:

Proposition 2.4. For the scalar curvature S on $(SU(2), g_{(a_1,a_2)})$,

- (a) S > 0 if and only if $(a_2 a_1 1)^2 < 4a_1$,
- (b) S = 0 if and only if $(a_2 a_1 1)^2 = 4a_1$,
- (c) S < 0 if and only if $(a_2 a_1 1)^2 < 4a_1$.

By virtue of (2.9) we obtain:

Theorem 2.5. For any nonzero tangent vector X of SU(2), the Ricci curvature r(X) on $(SU(2), g_{(a_1,a_2)})$ is always positive (resp. negative) if and only if

$$a_2 + a_1 - 1 > 0$$
 (resp. $a_2 + a_1 - 1 < 0$), $a_2 - a_1 - 1 < 0$, $a_2 - a_1 + 1 > 0$.

Moreover, for any given left invariant Riemannian metric g on SU(2), there exists a nonzero left invariant vector field Y such that $r(Y) \neq 0$.

Now, we introduce the notion of projectively flat connection in the tangent bundle TM of an n-dimensional manifold M. We say that two affine connections D and \tilde{D} are projectively equivalent if there exists a 1-form τ on M such that

And, we say that an affine connection D is projectively flat if D is projectively equivalent to a flat affine connection in a neighborhood of an arbitrary point of M.

Suppose that D is torsion free and the Ricci tensor Ric^D is symmetric. We define the *projective curvature tensor* W_p by

$$(2.12) \quad W_p(X,Y)Z = R^D(X,Y)Z - \frac{1}{n-1} \{ Ric^D(Y,Z)X - Ric^D(X,Z)Y \}.$$

If affine connections D and \tilde{D} are projectively equivalent, then their projective curvature tensors coincide. For $n \geq 3$, an affine connection D is projectively flat if and only if its projective curvature tensor vanishes ([4, Theorem 3.3, p. 18]).

From this point of view, we obtain:

Proposition 2.6. The Levi-Civita connection ∇ on $(SU(2), g_{(a_1,a_2)})$ is projectively flat if and only if $a_1 = a_2 = 1$.

Proof. For the orthonormal frame $\{Y_1,Y_2,Y_3\}$ on $(SU(2),g_{(a_1,a_2)})$, from (2.12), we prove that

(2.13)
$$R^{\nabla}(Y_i, Y_j)Y_k = \frac{1}{2} \{ Ric^{\nabla}(Y_j, Y_k)Y_i - Ric^{\nabla}(Y_i, Y_k)Y_j \}$$

if and only if $a_1 = a_2 = 1$ for any i, j, k = 1, 2, 3.

Suppose that the connection ∇ is projectively flat. Then, for indices (i, j, k) which appear in (2.13), we get the following from (2.7), (2.9) and $W_p = 0$ in (2.12);

- (a) $(a_2-a_1+1)(a_2-1)=0$ in the cases (i,j,k)=(1,2,1), (1,3,1), (2,1,1) and (3,1,1),
- (b) $(a_1-a_2+1)(a_1-1)=0$ in the cases (i,j,k)=(2,1,2), (2,3,2), (1,2,2) and (3,2,2),
- (c) $(a_1+a_2-1)(a_1-a_2)=0$ in the cases $(i,j,k)=(3,1,3),\ (3,2,3),\ (1,3,3)$ and (2,3,3).

Furthermore, from the properties of curvature tensor field, (2.7) and (2.9), we get

$$R^{\nabla}(Y_i, Y_j)Y_k = \frac{1}{2} \{ Ric^{\nabla}(Y_j, Y_k)Y_i - Ric^{\nabla}(Y_i, Y_k)Y_j \} = 0$$

except for the above 3-cases. From these facts, we obtain the fact that $a_1 = a_2 = 1$.

Conversely, suppose that $a_1 = a_2 = 1$ in $(SU(2), g_{(a_1, a_2)})$. Then, by virtue of (2.7), (2.9) and (2.12), we get $W_p = 0$ on M. So, the Levi-Civita connection ∇ in $(SU(2), g_{(1,1)})$ is projectively flat.

Thus, the proof of this proposition is completed.

From (2.9), we obtain:

Lemma 2.7. A necessary and sufficient condition for the metric $g_{(a_1,a_2)}$ on $(SU(2), g_{(a_1,a_2)})$ to be Einstein is $a_1 = a_2 = 1$.

Remark. It is well known that three dimensional Einstein manifold is a space of constant curvature ([2, Proposition 2, p. 293]). In general, a Riemannian manifold (M,g) is a space of constant curvature if and only if the Levi-Civita connection for the Riemannian metric g is projectively flat. Wolf ([9]) showed the fact that three dimensional nilpotent Lie group with an invariant metric is not constant curvature space. As a result on the existence of Einstein metric on a Lie group, the following theorem ([3, Theorem 2.4, p. 301]) is well known:

Let G be a nilpotent Lie group. Then there does not exist any left invariant Einstein metric on G.

From the above remark, (2.9) and Proposition 2.6, we obtain:

Theorem 2.8. On $(SU(2), g_{(a_1,a_2)})$, the following statements are equivalent;

- (a) The Levi-Civita connection ∇ for the left invariant metric $g_{(a_1,a_2)}$ on $(SU(2),g_{(a_1,a_2)})$ is projectively flat.
- (b) The Riemannian manifold $(SU(2), g_{(a_1,a_2)})$ is a space of constant curvature.
- (c) In the Riemannian manifold $(SU(2), g_{(a_1,a_2)}), a_1 = a_2 = 1.$
- (d) For any nonzero tangent vector X of SU(2), the Ricci curvature r(X) with respect to X is $\frac{1}{4}$.

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.

- [2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963.
- [3] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329.
- [4] K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, Cambridge, 1994.
- [5] J.-S. Park, Harmonic inner automorphisms of compact connected semisimple Lie groups, Tohoku Math. J. (2) 42 (1990), no. 1, 83–91.
- [6] ______, Critical homogeneous metrics on the Heisenberg manifold, Interdiscip. Inform. Sci. 11 (2005), no. 1, 31–34.
- [7] J.-S. Park and W. T. Oh, *The Abbena-Thurston manifold as a critical point*, Canad. Math. Bull. **39** (1996), no. 3, 352–359.
- [8] K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on SU(2,C) and SO(3,R), Math. Japon. **26** (1981), no. 2, 153–159.
- [9] J. A. Wolf, Curvature in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964), 271–274.

YONG-SOO PYO DIVISION OF MATHEMATICAL SCIENCES PUKYONG NATIONAL UNIVERSITY BUSAN 608-737, KOREA E-mail address: yspyo@pknu.ac.kr

HYUN WOONG KIM
DEPARTMENT OF MATHEMATICS
PUKYONG NATIONAL UNIVERSITY
BUSAN 608-737, KOREA

 $E ext{-}mail\ address: {\tt O127woong@hanmail.net}$

JOON-SIK PARK
DEPARTMENT OF MATHEMATICS
PUSAN UNIVERSITY OF FOREIGN STUDIES
BUSAN 608-738, KOREA
E-mail address: iohpark@pufs.ac.kr