
Bull. Korean Math. Soc. 46 (2009), No. 2, pp. 209–227
DOI 10.4134/BKMS.2009.46.2.209

COMPARISON OF STOCHASTIC VOLATILITY MODELS:
EMPIRICAL STUDY ON KOSPI 200 INDEX OPTIONS

Kyoung-Sook Moon†, Jung-Yon Seon, In-Suk Wee‡, and Choongseok Yoon

Abstract. We examine a unified approach of calculating the closed form
solutions of option price under stochastic volatility models using stochas-
tic calculus and the Fourier inversion formula. In particular, we review
and derive the option pricing formulas under Heston and correlated Stein-
Stein models using a systematic and comprehensive approach which were
derived individually earlier. We compare the empirical performances of
the two stochastic volatility models and the Black-Scholes model in pric-
ing KOSPI 200 index options.

1. Introduction

Based on no arbitrage arguments, Black and Scholes [3] and Merton [13]
derived a partial differential equation for the value of European stock options.
The Black-Scholes (B-S) model assumed that the asset price follows a geo-
metric Brownian motion with a constant volatility. Because of its simplicity
and analytical tractability, the B-S model is widely used among practitioners
for pricing options. However, a number of empirical studies documented sys-
tematic abnormalities and biases about the asset returns and resulting option
prices in the B-S framework. Among them, the most well-known bias of the
B-S model is the so-called volatility smile or skew. The implied volatilities from
the market prices of options vary with respect to strike prices and maturities,
contrary to the assumption of constant volatility in the B-S model. Empirical
studies found that asset returns usually have a higher kurtosis and a heavy tail
compared to the normal distribution which is assumed by the B-S model.
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Another aspect of previous empirical finding is that asset returns and its
volatility are negatively correlated although the effects on option pricing have
been considered as a less crucial and primary issue in market and academia.

There have been abundant attempts to introduce new models to improve the
restrictive B-S framework. Among the list, there are jump-diffusion models,
CEV models, stochastic volatility models, local volatility models, and expo-
nential Lévy models, which are by no means exhaustive yet and create an
overwhelming list of references.

One of major directions is to relax the B-S assumption of deterministic
volatility. To capture the volatility smile effect, it is assumed that the volatility
is governed by a separate stochastic process which is termed as a stochastic
volatility (SV) model.

Various SV models have been studied in the literature such as Hull and
White [8], Scott [18], Wiggins [21], Johnson and Shanno [9], Melino and Turn-
bull [12], Stein and Stein [20], Heston [7], and Nicolato and Venardos [15].
When dealing with option pricing models, it is important to have analytical
solutions for pricing derivatives in a closed form. Among these SV models men-
tioned above, Stein-Stein model and Heston model are used more extensively.
They admit analytic solutions and hence are computationally efficient. Be-
tween two SV models there are two distinct advantages which Heston’s model
can offer. Heston’s model allows for nonnegative volatility and nonzero cor-
relation between the asset price and volatility, while Stein and Stein’s model
doesn’t.

Stein and Stein [20] assumed that the volatility follows a mean reverting
Ornstein-Uhlenbeck process and presented explicit closed form solutions for
asset price distributions and option prices. But its major weakness was the as-
sumption of zero correlation between asset returns and its volatility. Heston [7]
developed another stochastic volatility model, which follows a mean-reverting
square-root process and asset returns and its volatility are correlated. A closed
form solution for options was derived using an analytical expression of the
characteristic function of log returns of underlying assets.

Scott [19] provided a jump diffusion model incorporating stochastic volatility
and stochastic interest, each of which follows a mean-reverting square root
processes such as Heston’s volatility process. He derived a closed form solution
for option price using stochastic calculus and the Fourier inversion formula.
Schöbel and Zhu [17] applied the analogous technique as in Scott [19] to extend
the Stein-Stein model to the case where asset return and its volatility are
correlated. To be more precise, it was assumed in Schöbel and Zhu [17] that the
volatility follows a mean-reverting Ornstein-Uhlenbeck process and is correlated
with asset returns. Closed form solutions for option prices are obtained by
employing the Fourier inversion formula.

In Bakshi, Cao, and Chen [1], they conducted a comprehensive empirical
study on a relatively rich class of option pricing models which incorporate
Heston’s SV, stochastic interest rate, and Merton’s random jumps which still
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admit option pricing formulas in a closed-form. As mentioned in their work,
random jumps or stochastic interest rates added to SV model do not improve
overall pricing performances and the SV model alone reduces pricing errors
significantly, while the random-jump feature improves the fitness of short-term
options and the stochastic interest rate feature improves the fit of long-term
options. More recently Lin, Strong, and Xu [11], Zhang and Shu [22], Chen
and Gau [4], and Dupoyet [6] investigated empirical performances of Heston’s
model on FTSE 100 index options, S&P 500 index options and currency options
respectively.

For pricing KOSPI 200 index options, Kim and Kim [10] examined four
different classes of stochastic volatility models including GARCH model, Vari-
ance Gamma model, and Heston model. They found that the Heston model
outperforms the other models for in-sample pricing, out-of-sample pricing, and
hedging.

Another point of view for improving pricing performances is to stress the
relevance of nonzero correlation between the asset return and its volatility.
This phenomena was observed and examined earlier in Rubinstein [16], Bates
[2] and Nandi [14]. In particular, Nandi [14] found substantial improvements
in pricing out-of-the-money options and overall pricing performance allowing
nonzero correlation in the empirical study for Heston’s model.

The objective of this work is two-fold. The first is to suggest a unified way of
deriving the closed form solutions for well-known and popular two versions of
SV model using stochastic calculus and the Fourier inversion formula employed
individually by Scott [19] and Schöbel and Zhu [17]. We derive the existing
formulas for option prices under Heston and correlated Stein-Stein models in
a unified method. For this purpose, we maintain our discussions in the present
work to be self-contained to a great extent. The second is to examine two
existing SV models and to analyze the empirical performances of the option
prices on KOSPI 200 index between two SV models and the B-S model.

The paper is organized as follows: In Section 2 we describe the general
settings of Heston and correlated Stein-Stein SV models. In Section 3 we
derive and present the option pricing formulas for the two SV models in a
comprehensive way. In Sections 4.1 and 4.2, we discuss the KOSPI 200 index
options data and the results from parameter estimation for two SV models.
In Section 4.3 we investigate model performances by analyzing out-of-sample
pricing errors for two SV models and B-S model. Finally in Section 5 we
summarize the results.

2. The stochastic volatility models

2.1. The Heston model

Let {St}t≥0 denote the price of the underlying asset on a suitable probability
space (Ω,F , P ) and satisfy the stochastic differential equation

(1) dSt = µStdt +
√

vtStdWt,
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where vt is a variance process and µ is a constant expected rate of return. We
assume that vt follows Cox-Ingersoll-Ross (CIR) [5] process:

(2) dvt = κ (θ − vt) dt + σ
√

vtdZt,

where θ is a long-run average of vt, κ is a rate of mean reversion, σ is called
volatility of volatility. Here θ, κ, σ are constants and Wt and Zt are two Brow-
nian motions with a correlation coefficient ρ ∈ [−1, 1], i.e.,

dW tdZt = ρdt.

As in Heston [7], we choose the market price of the volatility risk proportional
to the volatility. By shifting to a risk-neutral measure and applying Girsanov
theorem to (1) and (2) we have the following equations under a risk neutral
measure Q,

dSt = rStdt +
√

vtStdW t,(3)
dvt = κ∗ (θ∗ − vt) dt + σ

√
vtdZt,

where

κ∗ = κ + λ, θ∗ =
κθ

κ + λ
, dW tdZt = ρdt.

The variance moves toward the long-run average variance θ∗, with the speed
determined by κ∗. We use the stochastic differential equation (3) for the evo-
lutionary model of the underlying asset to describe Heston’s model. It is con-
venient to write

(4) Wt = ρZt +
√

1− ρ2Ẑt,

where Ẑt is a standard Brownian motion independent of Zt.

2.2. The correlated Stein-Stein model

Let {St}t≥0 denote the price of the underlying asset on a probability space
(Ω,F , P ) and satisfy the stochastic differential equation (1). To simplify the
notations, we use ut =

√
vt for a volatility process and assume that ut follows

a mean-reverting Ornstein-Uhlenbeck process,

(5) dut = κ̃
(
θ̃ − ut

)
dt + σ̃dZ̃t,

where κ̃, θ̃ and σ̃ are constants.
As in Schöbel and Zhu [17], we consider the extension of the Stein-Stein

model and assume that Wt and Z̃t are correlated Brownian motions with a
correlation coefficient ρ̃ ∈ [−1, 1]. Again following standard practice to take
a risk-neutral measure Q, we assume that the asset price and volatility are
governed as following two processes;

(6)
dSt = rStdt + utStdWt,

dut = κ̃
(
θ̃ − ut

)
dt + σ̃dZ̃t.
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Note that we continue to use the same parameters as in (5) to avoid displaying
too many insignificant parameters. Here Wt and Z̃t are correlated Brownian
motions with a correlation coefficient ρ̃ ∈ [−1, 1], i.e.,

dW tdZ̃t = ρ̃dt.

3. The option pricing formulas

For both SV models considered in the present work, the price of European
call option can be expressed as a conditional expectation of a discounted payoff
under the risk-neutral measure Q,

(7) EQ[e−rτ max(S(T )−K, 0)|Ft],

where τ ≡ T − t is the time to expiry, r is the constant riskless interest rate,
and K is a given strike price. Here Ft is defined by the smallest σ-algebra
generated by {Ws, Zs : s ≤ t} for the Heston model and {Ws, Z̃s : s ≤ t} for
the correlated Stein-Stein model respectively.

In the present section, we investigate a systematic and unified method to
provide closed-form solutions for European call option prices under two SV
models. First, we consider the Heston’s model under risk-neutral measure Q
and write

CHeston(St, vt, T − t)

= EQ[e−r(T−t) max(ST −K, 0)|Ft]

= EQ[e−r(T−t)ST 1{ST >K}|Ft]−KEQ[e−r(T−t)K1{ST >K}|Ft]
≡ C1(St, vt, T − t)−KC2(St, vt, T − t).(8)

Again under the correlated Stein-Stein model governed by (6), we obtain fol-
lowing analogous expression for European call option price,

CS−S(St, ut, T − t)

= EQ[e−r(T−t) max(ST −K, 0)|Ft]

= EQ[e−r(T−t)ST 1{ST >K}|Ft]−KEQ[e−r(T−t)K1{ST >K}|Ft]

≡ C̃1(St, ut, T − t)−KC̃2(St, ut, T − t).(9)

It is worthwhile to note that C1 and C̃1 stand for the values of asset-or-nothing
call option for each SV model. Similarly, C2 and C̃2 denote the values of
cash-or-nothing call option for each model.

3.1. Asset-or-nothing options

Let us denote the log of the asset price x(t) = ln S(t). For Heston’s model,
by change of the measure,

dQ1

dQ
= e−rT ST ,
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we have

C1(St, vt, T − t) = EQ[e−r(T−t)ST 1{xT >ln K}|Ft]

= EQ1 [ert1{xT >ln K}|Ft]EQ[ST e−rT |Ft]

= EQ1 [1{xT >ln K}|Ft]St

≡ F1St.

The characteristic function f1 of xT under Q1 conditioned on Ft can be defined
by

f1(φ) = EQ1 [eiφxT |Ft]

=
EQ[eiφxT ST e−rT |Ft]

EQ[ST e−rT |Ft]

=
EQ[eiφxT ST e−rT |Ft]

Ste−rt

= e−xt−r(T−t)EQ[e(1+iφ)xT |Ft] .(10)

Consequently, by applying the Fourier inversion formula, we obtain

(11) F1 =
1
2

+
1
π

∫ ∞

0

Re
(

f1(φ)
exp(−iφ ln K)

iφ

)
dφ

for Heston’s model. Therefore, the asset-or-nothing call option can be com-
puted by

(12) C1(St, vt, T − t) = StF1.

By repeating the same argument for the correlated Stein-Stein model, we have

(13) C̃1(St, ut, T − t) = StF̃1,

where F̃1 and f̃1 are defined analogously as in (10) and (11).

3.2. Cash-or-nothing options

The value of a cash-or-nothing call option for Heston’s model can be ex-
pressed as the following,

C2(St, vt, T − t) = EQ[e−r(T−t)1{xT >ln K}|Ft]

= e−r(T−t)Q(xT > ln K|Ft)

≡ e−r(T−t)F2.(14)

Now we calculate the characteristic function f2 of xT under Q conditioned on
Ft by

(15) f2(φ) = EQ[eiφxT |Ft].

Once we compute the characteristic function f2, F2 can be calculated using the
Fourier inversion formula:

(16) F2 =
1
2

+
1
π

∫ ∞

0

Re
(

f2(φ)
exp(−iφ ln K)

iφ

)
dφ.
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Again for correlated Stein-Stein model, we write along the similar lines,

(17) C̃2(St, ut, T − t) = e−r(T−t)F̃2,

where f̃2 denotes the characteristic function of xT under Q conditioned on Ft,
and F̃2 denotes the expression in (16) with f̃2 replacing f2.

3.3. The option pricing formulas for the Heston model

We now assume Heston’s model, under which St and vt follow the equations
in (3) under Q. To derive the formulas for f1 and f2 in (10) and (15), it is
convenient to obtain the Fourier transform of xT under Q conditioned on Ft

in a general setting. The proof of the lemma is given in Appendix.

Lemma 3.1. Assume that the value of the underlying asset price and its vari-
ance satisfy (3) under Q. Then, for z = 1+ iφ or iφ with φ real and τ = T − t,
we have

(18) f(z) = EQ[ezxT |Ft] = exp
(
z{xt + rτ − ρ

σ
(vt + κ∗θ∗τ)}

)

× exp (A(τ)vt + B(τ)) ,

where the functions A(τ) and B(τ) satisfy

A(τ) =
s2 (γ + κ∗) + s2e

τγ (γ − κ∗) + 2s1(eτγ − 1)
−s2(eτγ − 1)σ2 + γ − κ∗ + eτγ (γ + κ∗)

,(19)

and

(20) B(τ) =
2θ∗κ∗

σ2
ln

[
2γeτ(γ+κ∗)/2

−s2(eτγ − 1)σ2 + γ − κ∗ + eτγ (γ + κ∗)

]

with
γ =

√
κ∗2 − 2s1σ2,

s1 = z( ρ
σ κ∗ − 1

2 ) + 1
2z2(1− ρ2), s2 = z ρ

σ .

Once we compute the Fourier transform (18), we drive the value of European
call option under the Heston SV model.

Theorem 3.2 (Heston Model). Assume that the underlying asset price and its
variance satisfy (3) under Q. Then European call option pricing formula for
the Heston model is given by

CHeston(St, vt, T − t) = StF1 − e−rτKF2,

where K is the strike price and r is the riskless interest rate, and τ = T − t is
the time to maturity. Here

f1(φ) = f(1 + iφ) exp(−xt − rτ),
f2(φ) = f(iφ),

Fi =
1
2

+
1
π

∫ ∞

0

Re
(

fi(φ)
exp(−iφ ln K)

iφ

)
dφ,

and f is defined in (18).



216 K.-S. MOON, J.-Y. SEON, I.-S. WEE, AND C. YOON

3.4. The option pricing formulas for the correlated Stein-Stein model

By employing the analogous techniques, we compute the characteristic func-
tions for the correlated Stein-Stein model. The proof of the lemma is given in
Appendix.

Lemma 3.3. Assume that the underlying asset price and its volatility satisfy
(6) under Q. Then for z = 1 + iφ or iφ with φ real and τ = T − t, we have

(21) f̃(z) = EQ[ezxT |Ft] = exp
(

z{(xt + rτ)− 1
2
ρ̃{σ̃−1u2

t + σ̃τ}}
)

× exp
(

1
2
G(τ)u2

t + H(τ)ut + I(τ)
)

,

where the functions G(τ), H(τ) and I(τ)satisfy

G(τ) =
1
σ̃2

(
κ̃− γ1

sinh(γ1τ) + γ2 cosh(γ1τ)
cosh(γ1τ) + γ2 sinh(γ1τ)

)
,(22)

and

(23) H(τ) =
1

σ̃2γ1

(
(κ̃θ̃γ1 − γ2γ3) + γ3(sinh(γ1τ) + γ2 cosh(γ1τ))

cosh(γ1τ) + γ2 sinh(γ1τ)
− κ̃θ̃γ1

)
,

(24) I(τ) = −1
2

ln(cosh(γ1τ) + γ2 sinh(γ1τ)) +
1
2
κ̃τ

+
κ̃2θ̃2γ2

1 − γ2
3

2σ̃2γ3
1

(
sinh(γ1τ)

cosh(γ1τ) + γ2 sinh(γ1τ)
− γ1τ

)

+
(κ̃θ̃γ1 − γ2γ3)γ3

σ̃2γ3
1

(
cosh(γ1τ)− 1

cosh(γ1τ) + γ2 sinh(γ1τ)

)
,

with
γ1 =

√
κ̃2 + 2s1σ̃2, γ2 = 1

γ1
(κ̃− 2s3σ̃

2), γ3 = κ̃2θ̃ − s2σ̃
2,

s1 = − 1
2z2(1− ρ̃2) + 1

2z(1− 2κ̃ρ̃σ̃−1),
s2 = zκ̃θ̃ρ̃σ̃−1,
s3 = 1

2zρ̃σ̃−1.

Using Lemma 3.3, we can similarly obtain the value of European call option
under the correlated Stein-Stein model as follows:

Theorem 3.4 (Correlated Stein-Stein Model). Assume that the underlying
asset price and its volatility satisfy (6) under Q. Then European call option
pricing formula for the correlated Stein-Stein model is given by

C̃S−S(St, ut, T − t) = StF̃1 − e−rτKF̃2,
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where K is the strike price and r is the riskless interest rate, and τ = T − t is
the time to maturity. Here

f̃1(φ) = f̃(1 + iφ) exp(−xt − rτ),

f̃2(φ) = f̃(iφ),

F̃i =
1
2

+
1
π

∫ ∞

0

Re
(

f̃i(φ)
exp(−iφ ln K)

iφ

)
dφ,

and f̃ is defined in (21).

4. Empirical performances on KOSPI200 index options

Based on the closed form solutions presented in Theorem 3.2 for the Heston
model and in Theorem 3.4 for the correlated Stein-Stein model we examine and
compare the relative empirical performances of two SV models and B-S model
in pricing KOSPI 200 options. To perform the empirical test, it is essential to
estimate the unobservable structure parameters and the spot volatility using
an efficient methodology. We use the most popular approach of minimizing the
weighted sum of squared pricing errors between the models prices and market
prices for estimation of parameters. We assess and analyze two distinct types
of out-of-sample pricing errors for KOSPI 200 options under two SV models
and B-S model.

4.1. Data description

The KOSPI200 (Korea Stock Price Index 200) option was developed at the
Korea Stock Exchange (KSE) in June 1994 by selecting 200 stocks from a broad
range of industry groups of stocks listed on the KSE. Our empirical study is
based on European style KOSPI 200 options over the period from Jan. 2, 2004
through Sept. 21, 2006. For each day in the sample, the last reported bid-
ask price quotes and closing prices are recorded which are used for different
purposes.

To enhance the efficiency of our analysis, we eliminate options prices from
our data to avoid unnecessary bias and noises. We exclude options with ma-
turities less than 6 days or more than 90 days, and options with prices lower
than 0.2. Moreover options with the moneyness S/K is less than 0.8 or larger
than 1.2, i.e., very deep out-of-money or deep in-the-money are discarded. The
prices which are not satisfying the arbitrage restriction are excluded, i.e.,

CMarket ≥ S −D − e−r(T−t)K

where CMarket is the observed market prices and D is a present value of a sum of
the future dividends during remaining time T − t. Following the convention of
KSE, the 91-day certificate of deposit (CD 91-day) rate is used as the risk-free
interest rate.

Through a series of data filtering, a total of 17,843 call options over the
period 879 days are recorded. We categorize the option data according to their
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moneyness S/K and maturity and describe their characteristics in Table 1. On
the basis of moneyness option data consist of 32.9% OTM, 32.4% ATM, and
34.7% ITM options. The study shows that the average call option price ranges
from 0.4077 for short-term and deep OTM options to 13.5873 for short-term
and deep ITM call options. In turns out that on average we retain about 26
call option prices observed on each day.

Table 1. KOSPI200 Call Option Data

Days-to-Maturity
Moneyness ≤ 30 31− 60 61− 90 Overall

OTM S/K < 0.94 0.4077 0.6688 1.1459 0.8640
(0.0083) (0.0157) (0.0248) (0.0224)
{227} {1398} {1335} {2960}

0.94 ≤ S/K < 0.97 0.6924 1.5706 2.5822 1.7139
(0.0163) (0.0275) (0.0339) (0.0392)
{687} {1218} {1009} {2914}

ATM 0.97 ≤ S/K < 1.00 1.6296 3.1394 4.3130 3.0389
(0.0328) (0.0406) (0.0452) (0.0569)
{931} {1163} {938} {3032}

1.00 ≤ S/K < 1.03 3.7496 5.2555 6.3118 5.0725
(0.0485) (0.0543) (0.0588) (0.0662)
{876} {1091} {774} {2741}

ITM 1.03 ≤ S/K < 1.06 6.7828 7.8816 8.8208 7.7879
(0.0665) (0.0723) (0.0746) (0.0772)
{735} {972} {627} {2334}

S/K ≥ 1.06 14.5470 13.3575 13.5873 13.7584
(0.2164) (0.1600) (0.1427) (0.1745)
{1089} {1673} {1100} {3862}

Overall 5.7639 5.6209 5.8003 5.7155
(0.2330) (0.1997) (0.1862) (0.2046)
{4545} {7515} {5783} {17843}

This table reports average option price, standard error (in parentheses), and the

number of options (in braces), for each moneyness-maturity category. The sample

period extends from January 2, 2004 to September 21, 2006. Daily information from

the last transaction prices of each option contract is used to obtain the summary

statistics. Moneyness is defined as S/K, where S denotes the spot price and K

denotes the strike price. OTM, ATM, and ITM denote out-of-the money, at-the-

money, and in-the-money options, respectively.

4.2. Parameter estimation

To compute option prices for Heston’s model, one needs to estimate the vec-
tor of spot variances vt0 and structural parameters, Φ = (κ∗, θ∗, σ, ρ, vt0).
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Table 2. Parameter Estimation

Model Parameters
B-S σimp

0.1993
(0.0015)

S-S κ̃ θ̃ σ̃ ρ̃ ut0

2.5214 0.1717 0.2098 -0.1830 0.1998
(0.1646) (0.0075) (0.0082) (0.0189) (0.0021)

Heston κ∗ θ∗ σ ρ vt0

6.9282 0.0698 0.2896 -0.3496 0.0427
(0.2765) (0.0038) (0.0115) (0.0246) (0.0009)

This table reports the daily average and its standard error (in parentheses) of the

estimated parameters. The Black-Scholes model in which a single implied volatility

is estimated across all strikes and maturities on a given day and the SV models in

which parameters are estimated by minimizing the weighted sum of squared pricing

errors between model and market option prices for each day.

For the counterpart of Stein-Stein model, the vector of the spot volatility ut0 ,
and structural parameters, Φ̃ = (κ̃, θ̃, σ̃, ρ̃, ut0), are input parameters to
be estimated from option data. Following the standard practice by most re-
searchers and practitioners, we use the least-square-minimization method to
obtain the parameters implied by option data.

We describe the estimation procedure as follows. First, we collect Nt option
values on the same underlying asset in the same day t. These options have
different times to maturity and strike prices. Let CMid

i,t be the mid price of
bid-ask spread of the i-th option on day t, and CModel

i,t be either the Heston’s
or the correlated Stein-Stein model prices of the i-th option on day t. The
parameter set Φ and Φ̃ are then determined by

(25) min
Nt∑

i=1

ωi

(
CMid

i,t − CModel
i,t

)2
for t = 1, 2, . . . , Td,

where Td is the total number of days in the sample. Here we take the observed
mid price CMid

i,t and the weight function ωi as following

CMid
i,t =

Cbid
i,t + Cask

i,t

2
, ωi =

1
Cask

i,t − Cbid
i,t

where Cbid
i,t and Cask

i,t are the bid and ask prices of the i-th option at the day t. If
the bid-ask spread of a particular option is great, then we have a wider range of
market prices around the mid-price which necessarily imply small liquidity as a
result. It is quite reasonable to take less weights for such options in estimating
the implied parameters.
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For the Heston and the correlated Stein-Stein models, Table 2 reports the
averages and the standard errors (in parentheses) of the parameters, which are
estimated daily. The implied parameters of KOSPI200 index call option in the
sample are shown to be the average values of {κ∗, θ∗, σ} = {6.9282, 0.0698,
0.2896} for the Heston model and {κ̃, θ̃, σ̃} = {2.5214, 0.1717, 0.2098} for the
correlated Stein-Stein model. The average of estimated correlation coefficients
are ρ = −0.3496 and ρ̃ = −0.1830. We conform the widely accepted assumption
that asset returns and volatility are negatively correlated, as documented by
many previous results such as Rubinstein [16], Nandi [14], and Bates [2].

4.3. Empirical tests

Using estimation methology described earlier, we perform out-of-sample
pricing tests for two versions of SV model and the B-S model. For two SV
models, the implied structural parameters and spot variance and spot volatil-
ity are computed by minimizing the weighted sum of squared errors between
model prices and mid-prices from the previous day while for B-S model, an
average single implied volatility is computed from the previous day.

For measurement of pricing errors, we demonstrate values of the mean per-
centage pricing error(MPE) and mean absolute pricing error(MAE) defined
as

(1) MPE

1
N

N∑

i=1

(
CMarket

i − CModel
i

CMarket
i

)

(2) MAE

1
N

N∑

i=1

∣∣CMarket
i − CModel

i

∣∣

where N is the total number of options in a particular moneyness-maturity
category, CMarket

i and CModel
i represent the market price and the theoretical

model price, respectively. These measurements were popular, e.g., in Bakshi,
Cao, and Chen [1].

Table 3 and Table 4 report the MPE’s and MAE’s of the Black-Scholes
model, the correlated Stein-Stein model, the Heston model, for each moneyness-
maturity categories. We summarize the results and draw some conclusions.
From both pricing error measurements, two SV models improve pricing perfor-
mances significantly over B-S model which is not surprising as was found by
Bakshi, Cao, and Chen [1]. In comparison of two SV models, it is worthwhile to
notice that Heston model performs slightly better than correlated Stein-Stein
model in the most categories, although two SV models have the identical num-
ber of structural parameters. Pricing improvements of two SV models over B-S
model are particularly noticeable for OTM options in pricing error measure-
ments. As an example, for long-term option with moneyness less than 0.94,
MPE for B-S, Stein-Stein and Heston models are -2.76%, -1.33%, -1.05% and
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Table 3. The Out-of-sample Mean Percentage Pricing Error (MPE)

Days-to-Maturity
Moneyness ≤ 30 31− 60 61− 90 Overall

OTM S/K < 0.94 B-S -0.0923 -0.2427 -0.2276 -0.2243
(0.0123) ( 0.0164 ) ( 0.0132 ) ( 0.0148 )

S-S -0.0956 -0.0367 -0.0133 -0.0307
( 0.0044 ) ( 0.0037 ) ( 0.0054 ) ( 0.0047 )

Heston -0.0808 -0.0148 -0.0105 -0.0179
( 0.0043 ) ( 0.0032 ) ( 0.0054 ) ( 0.0044 )

0.94 ≤ S/K < 0.97 B-S -0.1386 -0.1318 -0.1072 -0.1249
( 0.0138 ) ( 0.0118 ) ( 0.0094 ) ( 0.0116 )

S-S -0.0591 -0.0042 0.0119 -0.0116
( 0.0044 ) ( 0.0027 ) ( 0.0036 ) ( 0.0036 )

Heston -0.0333 0.0050 0.0049 -0.0041
( 0.0042 ) ( 0.0020 ) ( 0.0035 ) ( 0.0033 )

ATM 0.97 ≤ S/K < 1.00 B-S -0.0865 -0.0446 -0.0586 -0.0618
( 0.0103 ) ( 0.0056 ) ( 0.0059 ) ( 0.0075 )

S-S -0.0052 0.0214 0.0146 0.0111
( 0.0021 ) ( 0.0017 ) ( 0.0034 ) ( 0.0025 )

Heston -0.0008 0.0164 0.0049 0.0076
( 0.0021 ) ( 0.0016 ) ( 0.0032 ) ( 0.0024 )

1.00 ≤ S/K < 1.03 B-S -0.0209 -0.0305 -0.0532 -0.0338
( 0.0037 ) ( 0.0035 ) ( 0.0051 ) ( 0.0041 )

S-S -0.0012 0.0011 -0.0126 -0.0035
( 0.0015 ) ( 0.0018 ) ( 0.0041 ) ( 0.0026 )

Heston -0.0022 -0.0024 -0.0181 -0.0068
( 0.0016 ) ( 0.0018 ) ( 0.0040 ) ( 0.0026 )

ITM 1.03 ≤ S/K < 1.06 B-S -0.0090 -0.0269 -0.0484 -0.0270
( 0.0027 ) ( 0.0030 ) ( 0.0039 ) ( 0.0032 )

S-S -0.0126 -0.0180 -0.0289 -0.0192
( 0.0023 ) ( 0.0023 ) ( 0.0035 ) ( 0.0027 )

Heston -0.0123 -0.0176 -0.0294 -0.0191
( 0.0023 ) ( 0.0023 ) ( 0.0034 ) ( 0.0027 )

S/K ≥ 1.06 B-S -0.0003 -0.0217 -0.0430 -0.0217
( 0.0020 ) ( 0.0027 ) ( 0.0029 ) ( 0.0026 )

S-S -0.0038 -0.0233 -0.0391 -0.0223
( 0.0020 ) ( 0.0024 ) ( 0.0024 ) ( 0.0024 )

Heston -0.0036 -0.0222 -0.0376 -0.0214
( 0.0020 ) ( 0.0025 ) ( 0.0024 ) ( 0.0024 )

Overall B-S -0.0489 -0.0861 -0.1013 -0.0816
( 0.0082 ) ( 0.0096 ) ( 0.0087 ) ( 0.0090 )

S-S -0.0180 -0.0115 -0.0109 -0.0130
( 0.0028 ) ( 0.0027 ) ( 0.0040 ) ( 0.0032 )

Heston -0.0125 -0.0070 -0.0135 -0.0105
( 0.0027 ) ( 0.0024 ) ( 0.0039 ) ( 0.0030 )

The Black-Scholes model price is computed by using the average implied volatility

from the previous day. The SV model prices are computed by using the implied

parameters estimated from minimizing the weighted sum of squared errors between

the mid price and the model price from the previous day. The reported percentage

pricing error is the sample average of the market price minus the model price, divided

by the market price. The numbers in the parentheses are the standard errors.

MAE for B-S, Stein-Stein and Heston models are 0.2592, 0.0991, and 0.0966
respectively. By examining MPE, we find that regardless of pricing models,
OTM options are overpriced in each maturity class, whereas the magnitude of
errors in two SV models is much smaller than in B-S model. On the basis of
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Table 4. The Out-of-sample Mean Absolute Pricing Error(MAE)

Days-to-Maturity
Moneyness ≤ 30 31− 60 61− 90 Overall

OTM S/K < 0.94 B-S 0.0812 0.1543 0.2592 0.1960
(0.0030) (0.0069) (0.0103) (0.0088)

S-S 0.0361 0.0370 0.0991 0.0649
(0.0012) (0.0016) (0.0052) (0.0039)

Heston 0.0335 0.0331 0.0966 0.0617
(0.0011) (0.0015) (0.0052) (0.0038)

0.94 ≤ S/K < 0.97 B-S 0.1295 0.2452 0.4091 0.2747
(0.0049) (0.0112) (0.0169) (0.0132)

S-S 0.0392 0.0602 0.1656 0.0917
(0.0014) (0.0026) (0.0074) (0.0052)

Heston 0.0347 0.0537 0.1635 0.0872
(0.0013) (0.0024) (0.0073) (0.0051)

ATM 0.97 ≤ S/K < 1.00 B-S 0.1867 0.2677 0.4524 0.2999
(0.0065) (0.0118) (0.0180) (0.0135)

S-S 0.0421 0.1066 0.2540 0.1324
(0.0016) (0.0052) (0.0102) (0.0074)

Heston 0.0418 0.0968 0.2363 0.1231
(0.0016) (0.0050) (0.0099) (0.0071)

1.00 ≤ S/K < 1.03 B-S 0.2127 0.3114 0.5592 0.3498
(0.0075) (0.0130) (0.0237) (0.0165)

S-S 0.0884 0.1805 0.4425 0.2250
(0.0040) (0.0082) (0.0191) (0.0128)

Heston 0.0886 0.1748 0.4145 0.2149
(0.0042) (0.0081) (0.0190) (0.0126)

ITM 1.03 ≤ S/K < 1.06 B-S 0.2261 0.3896 0.6566 0.4098
(0.0124) (0.0180) (0.0273) (0.0206)

S-S 0.1760 0.3169 0.5572 0.3371
(0.0114) (0.0154) (0.0250) (0.0184)

Heston 0.1753 0.3165 0.5439 0.3331
(0.0115) (0.0157) (0.0242) (0.0182)

S/K ≥ 1.06 B-S 0.3366 0.5342 0.7604 0.5430
(0.0223) (0.0283) (0.0315) (0.0284)

S-S 0.3208 0.5267 0.7038 0.5192
(0.0223) (0.0263) (0.0268) (0.0260)

Heston 0.3234 0.5249 0.6917 0.5157
(0.0224) (0.0266) (0.0271) (0.0262)

Overall B-S 0.2200 0.3244 0.4952 0.3532
(0.0133) (0.0179) (0.0227) (0.0191)

S-S 0.1386 0.2176 0.3464 0.2392
(0.0128) (0.0159) (0.0190) (0.0166)

Heston 0.1382 0.2130 0.3351 0.2335
(0.0128) (0.0160) (0.0189) (0.0165)

The Black-Scholes model price is computed by using the average implied volatility

from the previous day. The SV model prices are computed by using the implied

parameters estimated from minimizing the weighted sum of squared errors between

the mid price and the model price from the previous day. The reported absolute

pricing error is the absolute value of the market price minus the model price within

each moneyness-maturity category. The numbers in the parentheses are the standard

errors.

MPE, the pricing improvements by two SV models over B-S model decrease as
moneyness increases, i.e., from OTM to ATM and from ATM to ITM in each
maturity group. Contrary to this, the magnitude of absolute pricing errors
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reported in MAE typically increase as the moneyness increase in each maturity
class across all models, since the options become more valuable as the money-
ness increases. We observe again that in MAE measurement, the Heston model
outperforms the other models in most of the moneyness-maturity groups, and
the magnitude of improvement is more substantial for OTM options than for
ITM options.

5. Conclusions

In this work, we review and derive the closed form solutions for the values
of European call options under the Heston’s and the correlated Stein-Stein
stochastic volatility models using a unified approach. The analytic solutions
are derived using stochastic calculus and Fourier inversion formula. Pricing
performances of two versions of SV models and B-S model are empirically
analyzed using the KOSPI 200 index option data from Jan. 2, 2004 through
Sept. 21, 2006. The cross-sectional implied parameters are estimated from
minimizing the weighted sum of squared errors between the market and the
model prices for each model. Through the measurements of pricing errors, we
conclude that two SV models outperform significantly over B-S model and the
Heston model performs slightly better than the correlated Stein-Stein model.

6. Appendix

In this section, we prove the formulas of the characteristic functions (18)
and (21) for the Heston model in Lemma 3.1 and the correlated Stein-Stein
model in Lemma 3.3 respectively.

Proof of the Lemma 3.1

We adopt the approach employed in Scott [19] and provide more detailed
discussions along the lines. Let us denote the log of the stock price xt = ln S(t).
Then from the stochastic differential equation (3), xt satisfies

dxt =
(

r − 1
2
vt

)
dt +

√
vtdWt.

For z = 1 + iφ, we obtain

f(z) = f(1 + iφ)

= EQ
[
e(1+iφ)xT |Ft

]

= e(1+iφ)xtEQ
[
e(1+iφ)(xT−xt)|Ft

]

= e(1+iφ)(xt+rτ)EQ
[
e(1+iφ)(

R T
t (− 1

2 vs)ds+
R T

t

√
vsdWs)|Ft

]
.(26)

Using the relation (4), we can write
∫ T

t

√
vsdWs =

∫ T

t

√
vs

(
ρdZs +

√
1− ρ2dẐs

)
,
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where Zs and Ẑs are independent Brownian motions. We introduce another
filtration F̂t, the smallest σ-algebra generated by {Ws, s ≤ t, Zu, u ≤ T}. Then
the expectation in (26) can be written

EQ

[
EQ

[
exp

(
−1

2
(1 + iφ)

∫ T

t

vsds

)
exp

(
(1 + iφ)

∫ T

t

√
vsdWs

)
|F̂t

]
|Ft

]

= EQ

[
exp

(
−1

2
(1 + iφ)

∫ T

t

vsds

)
exp

(
(1 + iφ)ρ

∫ T

t

√
vsdZs

)

EQ

[
exp

(
(1 + iφ)

√
1− ρ2

∫ T

t

√
vsdẐs

)
|F̂t

]
|Ft

]
.

Since ∫ T

t

√
1− ρ2

√
vsdẐs ∼ N

(
0,

∫ T

t

(1− ρ2)vsds

)
,

we obtain

EQ

[
exp

(
(1 + iφ)

√
1− ρ2

∫ T

t

√
vsdẐs

)
|F̂t

]

= exp

(
1
2
(1 + iφ)2(1− ρ2)

∫ T

t

vsds

)
.

Also from (3), we have

(1 + iφ)ρ
∫ T

t

√
vsdZs

= (1 + iφ)
ρ

σ

(∫ T

t

dvs −
∫ T

t

k∗(θ∗ − vs)ds

)

= (1 + iφ)
ρ

σ
(vT − vt − k∗θ∗τ) + (1 + iφ)

k∗ρ
σ

∫ T

t

vsds.

As a consequence, we have

(27) f(1 + iφ) = e(1+iφ)(xt+rτ)−(1+iφ) ρ
σ (vt+κ∗θ∗τ)EQ[es2vT es1

R T
t

vsds|Ft],

where

(28) s1 = (1 + iφ)
(

k∗ρ
σ

− 1
2

)
+

1
2

(1 + iφ)2
(
1− ρ2

)
, s2 = (1 + iφ)

ρ

σ
.

Let us define
y(v, t, T ) = EQ[es2v(T )es1

R T
t

vsds|Ft],
with s1 and s2 are defined in (28). Then the Feynman-Kac stochastic repre-
sentation theorem provides us that y is the solution of the following PDE

(29)
∂y

∂t
+ k∗(θ∗ − v)

∂y

∂v
+

1
2
σ2v

∂2y

∂v2
+ s1vy = 0
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with a final condition
y(v, T, T ) = es2v.

By analogy with Black-Scholes formula, we guess a solution of the form:

y(v, t, T ) = eA(T−t)v+B(T−t).

By substituting the proposed value in (29), we obtain the following ordinary
differential equations (ODEs) for A(τ) and B(τ):

A′(τ) = k∗A(τ)− 1
2
σ2A2(τ)− s1, A(0) = s2,

B′(τ) = −k∗θ∗A(τ), B(0) = 0.

The solutions of the above Riccati equation have well known formula from the
literature. Hence f(1 + iφ) is given by

(30) f(1 + iφ) = e(1+iφ)(xt+rτ)−(1+iφ) ρ
σ (vt+κ∗θ∗τ)eA(τ)vt+B(τ),

where τ = T−t and A(τ) and B(τ) are defined in (19) and (20) respectively for
z = 1 + iφ. For z = iφ, one can apply similar techniques to get the expression
in (18) for f(iφ). This concludes the lemma. 2

The similar calculations are performed for the correlated Stein-Stein model
to get Lemma 3.3.

Proof of the Lemma 3.3

We follow the proof given in Shöbel and Zhu [17]. Let us denote the log of
the stock price xt = ln St. Then from the stochastic differential equation (6),
xt satisfies

dxt =
(

r − 1
2
u2

t

)
dt + utdWt.

For z = 1 + iφ, we obtain

f̃(z) = f̃(1 + iφ)

= E
eQ

[
e(1+iφ)xT )|Ft

]

= e(1+iφ)(xt+rτ)E
eQ

[
e{(1+iφ)

R T
t (− 1

2 u2
s)ds+(1+iφ)

R T
t

usdWs}|Ft

]
.

From Ito’s formula and the equation (6), we have
∫ T

t

usdZ̃s =
1
2σ̃

{
u2

T − u2
t − σ̃2(T − t)− 2κ̃

∫ T

t

us(θ̃ − us)ds

}
.

We perform similar calculations as in the proof of the Lemma 3.1 and to obtain

f̃(1 + iφ) = e(1+iφ)(xt+rτ)− 1
2 (1+iφ)ρ̃(σ̃τ+u2

t σ̃−1)} E
eQ

[
es3u2

T−
R T

t (s1u2
s+s2us)ds|Ft

]
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where

s1 = −1
2
(1 + iφ)2(1− ρ̃2) +

1
2
(1 + iφ)(1− 2κ̃ρ̃σ̃−1),

s2 = (1 + iφ)κ̃θ̃ρ̃σ̃−1, s3 =
1
2
(1 + iφ)ρ̃σ̃−1.

Let us define
y(u, t, T ) = E

eQ[es3u2
T e−

R T
t

(s1u2
s+s2us)ds|Ft].

Then the Feynman-Kac stochastic representation theorem provides us that y
is the solution of the following PDE

∂y

∂t
+ κ̃(θ̃ − u)

∂y

∂u
+

1
2
σ̃2 ∂2y

∂u2
− (s1u

2 + s2u)y = 0

with a final condition
y(u, T, T ) = es3u2

.

Similarly y can be written by

y(u, t, T ) = e
1
2 G(T−t)u2+H(T−t)u+I(T−t)

and the solution of ODEs for G(τ),H(τ), I(τ) are given in (22), (23), and (24)
in Lemma 3.3 respectively (See Schöbel and Zhu [17] for details). For z = iφ, we
use similar techniques to get the expression in (21) for f̃(iφ), which concludes
the lemma.
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