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THE NEARLY ADDITIVE MAPS

Esmaeeil Ansari-Piri and Nasrin Eghbali

Abstract. This note is a verification on the relations between almost lin-
ear and nearly additive maps; and the continuity of almost multiplicative
nearly additive maps. Also we consider the stability of nearly additive
and almost linear maps.

1. Introduction

In 1952, Michael asked his famous question about the continuity of multi-
plicative linear functionals on complete metrizable locally convex topological
algebras. From that time mathematicians have studied this interesting problem
in various directions. A part of studies is on complete metrizable topological
algebras which are not necessarily locally convex. It is proved in [2] that ev-
ery multiplicative linear functional is automatically continuous on complete
metrizable FLM algebras, where by an FLM algebra we mean a fundamental
topological algebra A for which there exists a neighborhood U0 of zero such
that, for every neighborhood V of zero, the sufficiently large power of U0 lie
in V (See also [1]). The other group of mathematicians have replaced multi-
plicative linear functionals with almost multiplicative one, or even with almost
linear operators.

In 2002, Šemrl [19] introduces the concept of almost linear maps, and Jarosz
[11] discusses the continuity of almost multiplicative linear functionals on Ba-
nach algebras. In [3] it is proved that an almost multiplicative linear map
from a Banach algebra to a semi-simple Banach algebra is continuous. We
will show here that (Theorem 3.3) every homogeneous nearly additive almost
multiplicative functional on a Banach algebra is continuous.

The stability of functional equations is an interesting area of research for
mathematicians, but it can be also of importance to persons who work outside
of the realm of pure mathematics. For example, physicists are interested in
the stability of the mathematical formulae which they use to model physical
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processes. More precisely, physicists and other scientists are interested in deter-
mining when a small change in an equation used to the model of a phenomenon,
gives a large changes in the results predicted by the equation.

At first, in 1940, Ulam [20] studied the stability of functional equations:
Given a group G1, a metric group G2 and ε > 0, find δ > 0 such that, if
f : G1 → G2 satisfies d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ G1, then there exists
a homomorphism g : G1 → G2 such that d(f(x), g(x))) ≤ ε for all x ∈ G1.

In 1941, Hyers [8] showed that if δ > 0 and if f : E1 → E2 is a mapping
between Banach spaces E1 and E2 with ||f(x + y) − f(x) − f(y)|| ≤ δ for all
x, y ∈ E1, then there exists a unique T : E1 → E2 such that T (x + y) =
T (x) + T (y) with ||f(x)− T (x)|| ≤ δ for all x, y ∈ E1.

In 1978, a generalized solution to Ulam’s problem for approximately linear
mappings was given by Th. M. Rassias [15]. He considered E1 and E2 to be
two Banach spaces and assumed the existence of δ ≥ 0 and p ∈ [0, 1) such
that ||f(x + y) − f(x) − f(y)|| ≤ δ(||x||p + ||y||p) for every x, y ∈ E1. Then
he proved that there exists a unique linear mapping T : E1 → E2 such that
||f(x) − T (x)|| ≤ 2δ/(2 − 2p)||x||p for every x ∈ E1. It is easy to see that the
proof of Th. M. Rassias [15] also is valid for p < 0.

In 1991, Gajda [5] gave a solution to this question for p > 1. For the case
p = 1, Th. M. Rassias and Šemrl [16] show that there exists a continuous
real-valued function f : R → R such that f can not be approximated with an
additive map. In other words, an analogue of Rassias’s result for p = 1 can not
be obtained.

Finally in 1992, Gavruta [6] generalized the result of Th. M. Rassias for the
admissible control functions.

The approximated mappings have been studied extensively in several papers.
(See for example [9, 10, 13]).

In this note at first, we have gathered a collection of definitions and related
results. In Section 3, we introduce nearly additive maps and have a discussion
on the properties of these maps which are different from almost linear maps. In
Section 4, we have a more verification on nearly additive maps and the stability
of these maps.

2. Preliminaries

In this section we recall some definitions and related theorems on perturba-
tions of linear maps and in the next section we introduce a new concept about
this matter.

Definition. Let A be a normed algebra, B a complete normed algebra, and
ϕ : A −→ B a linear map. We say that ϕ is almost multiplicative if there exists
an ε > 0 such that, for all x, y ∈ A, ||ϕ(xy)− ϕ(x)ϕ(y)|| ≤ ε||x||||y||.
Definition. Let A be a normed algebra and B a complete normed algebra. A
mapping ϕ : A −→ B is said to be an almost linear map if there exists a δ > 0
such that, for every x, y ∈ A, ||ϕ(x + y)− ϕ(x)− ϕ(y)|| ≤ δ(||x||+ ||y||).
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Definition. Let A be a normed algebra and B a complete normed algebra. A
mapping ϕ : A −→ B is said to be an (ε, δ)-homomorphism if there exist ε > 0
and δ > 0 such that, for every x, y ∈ A, ||ϕ(xy) − ϕ(x)ϕ(y)|| ≤ ε||x||||y|| and
||ϕ(x + y)− ϕ(x)− ϕ(y)|| ≤ δ(||x||+ ||y||).
Theorem 2.1. Let A be a normed algebra. If ϕ : A → C is an (ε, δ)-
homomorphism which is not additive, then ϕ is bounded.

Proof. See the proof of [18, Theorem 2.1]. ¤

Definition. Suppose that X and Y are topological vector spaces and Γ is a
collection of linear mappings from X into Y . We say that Γ is equicontinuous
if for every neighborhood W of zero in Y , there corresponds a neighborhood V
of zero in X such that Λ(V ) ⊆ W for all Λ ∈ Γ.

Definition. Suppose that (G, +) is an abelian group. We call a function
ϕ : G×G → [0,∞) to be an admissible control function if, for all x, y ∈ G:

ϕ̂(x, y) = 1/2
∞∑

k=0

2−kϕ(2kx, 2ky) < ∞.

Theorem 2.2. Suppose that (G, +) is an abelian group, (X, || · ||) a complete
normed algebra, and ϕ an admissible control function. If f : G → X is a
mapping with ||f(x + y)− f(x)− f(y)|| ≤ ϕ(x, y) for all x, y ∈ G, then, there
exists a unique additive mapping T : G → X such that ||f(x)−T (x)|| ≤ ϕ(x, x)
for all x ∈ G.

Proof. See [6]. ¤

3. The nearly additive maps

In this section we define a new concept about perturbations of linear maps,
that is, nearly additive maps.

Definition. Let A be a normed space and B a complete normed space. A
mapping ϕ : A −→ B is a nearly additive map if there exists a δ > 0 such that
||ϕ(x + y)− ϕ(x)− ϕ(y)|| ≤ δ||x + y|| for all x, y ∈ A.

If ϕ : A −→ B is an almost linear map, then the continuity at the origin of
A can be the only point of continuity (see for example [18]). But we have the
following proposition:

Proposition 3.1. Let A be a normed space, B a complete normed space and
ϕ : A −→ B a nearly additive map which is continuous at zero. Then ϕ is
continuous.

Proof. It is completely straightforward. ¤

Now, we state and prove some well known theorems for nearly additive maps.
At first, we have a proposition on the boundedness of these maps.
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Proposition 3.2. Let A be a normed space, B a complete normed space and
ϕ : A → B a homogeneous nearly additive map. Then ϕ is continuous if and
only if it is bounded.

Proof. For a proof, see [17, Theorem 1.32]. ¤

Theorem 3.3. Every homogeneous nearly additive ε-multiplicative functional
ϕ on a Banach algebra X is continuous. Moreover ||ϕ|| ≤ 1 + ε.

Proof. When ϕ is an additive functional, the proof is given in [11]. In the other
case, by Theorem 2.1 and Proposition 3.2 the proof is complete. ¤

The Theorems 3.4 and 3.7 are the extensions of Banach-Steinhaus Theorem
and Closed graph Theorem [17].

Theorem 3.4. Let X be a normed space, Y a complete normed space, Γ a
collection of homogeneous nearly additive continuous mappings from X into Y ,
and B the set of all x ∈ X whose orbits Γ(x) = {Λ(x) : Λ ∈ Γ} are bounded in
Y . If B is of the second category in X, then B = X and Γ is equicontinuous.

Proof. Pick U = B(0, δ2) a neighborhood in Y . Put E =
⋂

Λ∈Γ Λ−1(U). It
is clear that E is a closed subset of X. If x ∈ B, then Γ(x) ⊆ nU for some
positive integer n, so that Λx ∈ Γ(x) ⊆ nU ⊆ nU for every Λ ∈ Γ. Therefore
x ∈ nE. Consequently, B ⊆ ⋃∞

n=1 nE. At least one nE is of the second
category in X. Since the mapping x 7→ nx is a homeomorphism of X onto
X, E is itself of the second category in X. But E is closed and therefore
int(E) 6= ∅. So there exists an x0 ∈ int(E) such that B(x0, r0) ⊆ E for some
r0. Suppose that there exists δ1 such that x ∈ B(0, δ1), so r0x ∈ B(0, r0δ1).
Set z = r0x + x0. It follows that z ∈ B(x0, r0δ1) ⊆ E. Hence ||Λx|| =
||Λ((z − x0)/r0)|| = 1/r0(||Λ(z − x0)||) ≤ 1/r0(δ||z − x0||+ ||Λz − Λx0||) ≤
1/r0(δ||z − x0||+ ||Λz||+ ||Λx0||) ≤ δδ1 + 2δ2/r0. This shows that Γ is equi-
continuous. It is straightforward to show that B = X. ¤

Lemma 3.5. Let (X, d1) and (Y, d2) be metric spaces and Λ be a map from X
into Y . The set G = {(x, Λx) : xεX} is closed if and only if, for every sequence
(xn) ∈ X with xn → x and Λ(xn) → y, we have Λ(x) = y.

Proof. See [7]. ¤

Lemma 3.6. Suppose that X is a normed space, δ > 1 and E a subset of X
such that, for every x in the unit ball B(0, 1) of X, there exists a ∈ E such that
||x− a|| < 1/δ. Then there exists a sequence (an) ∈ E, such that:

∣∣∣∣∣∣

∣∣∣∣∣∣
x−

n∑

j=0

aj/δj

∣∣∣∣∣∣

∣∣∣∣∣∣
< 1/δn+1.

Proof. See [7]. ¤
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Theorem 3.7. Let X be a normed space, Y a complete normed space and
T : X → Y a homogeneous nearly additive map with closed graph. Then T is
continuous.

Proof. For every α > 0, set Vα = {x ∈ X : ||Tx|| ≤ α}. We claim that there
exists α > 0 such that B1 ⊆ Vα, where B1 = B(0, 1) is a unit ball of X. We
have X =

⋃∞
n=1 Vn. Now by the Bair’s Theorem there exist n0 ∈ N, x ∈ X and

r > 0 such that B(x, r) ⊆ Vn0 , so B(0, r) ⊆ V2n0 , and B1 ⊆ V2n0/r. So for every
x ∈ B1, there exists a ∈ V2n0/r such that ||x− a|| < 1/2. By Lemma 3.6 there
exists a sequence (an) in V2n0/r such that for every x ∈ B1, ||x−bn|| < 1/2n+1,
where bn =

∑n
j=0 aj/2j . Now for n = 0, 1, 2, . . . we get:

||T (bn)− T (bn−1)|| ≤ δ||bn − bn−1||+ ||T (bn − bn−1)|| ≤ 2n0(δ + 1)/(r2n).

So, T (bn) is a Cauchy sequence in Y , and therefore there exists y ∈ Y such
that T (bn) → y. Also bn → x, and T (bn) → y. Since T has a closed graph, so
by Lemma 3.5, T (x) = y and it follows that:

||T (x)|| = lim
n→∞

||T (bn)|| ≤ lim
n→∞


δ||

n∑

j=0

aj/2j ||+ ||
n∑

j=0

T (aj/2j)||



≤ 4n0(δ + 1)/r.

Consequently B1 ⊆ V4n0(δ+1)/r. ¤

Theorem 3.8. Let X be a normed space, Y a complete normed space, K
a compact convex set in X, Γ a collection of homogeneous continuous nearly
additive mappings of X into Y , and the orbits Γ(x) = {Λx : Λ ∈ Γ} are bounded
subsets of Y for every x ∈ K. Then there exists a bounded set B of Y such
that Λ(K) ⊆ B for every Λ ∈ Γ.

Proof. Let B =
⋃

x∈K Γ(x). Pick balanced neighborhoods U = B(0, r1) and
W = B(0, r2) of Y . Put E =

⋂
Λ∈Γ Λ−1(U). By the Bair’s Theorem there exists

a positive integer n such that intK(K ∩ nE) 6= ∅ . Let x0 ∈ intK(K ∩ nE). We
choose a balanced neighborhood V = B(0, r3) such that K ∩ (x0 + V ) ⊆ nE.
We have K ⊆ ⋃

λ>0(x0 + λV ). Now, since K is compact there exist scalars
λ1, . . . , λm such that K ⊆ ⋃m

i=1 (x0 + λiV ). Suppose that p > max{λ1, . . . , λm,
1}. Then x0 + λiV ⊆ x0 + pV for every 1 ≤ i ≤ n. If x is any point of K and
z = (1/p)x + (1 − 1/p)x0, then z ∈ K and z − x0 ∈ V . Hence z ∈ nE. K is
compact and hence it is bounded. So, for every k ∈ K there exists r4 such that
||k|| ≤ r4. Since x = pz − (p− 1)x0, it follows that:

||Λx|| ≤ p||Λz||+ (p− 1)||Λx0||+ δ||pz − (p− 1)x0||
≤ pnr1 + (p− 1)nr1 + δpr3 + δr4

which proves that B is bounded. ¤
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4. Stability

Our starting point in this section is the following theorem.

Theorem 4.1. Let A be a normed algebra, B a complete normed algebra and
f : A → B a mapping such that f(tx) is continuous in t for each fixed x ∈ A.
Assume that there exist δ > 0 and p 6= 1 such that ||f(x + y)− f(x)− f(y)|| ≤
δ||x + y||p for every x, y ∈ A. Then, there exist a unique linear mapping
T : A → B and β > 0 such that ||f(x)− T (x)|| ≤ β||x||p for every x ∈ A.

Proof. For p < 1 the function ϕ(x, y) = δ||x + y||p is an admissible control
function, so by Theorem 2.2, the proof is complete.

For p > 1, define the mapping T by the formula T (x) = limn→∞ 2nf(x/2n)
for all x ∈ A. Obviously, one has to verify the convergence of the sequence
2nf( x

2n ). Putting x/2 in place of x and y in inequality ||f(x+y)−f(x)−f(y)|| ≤
δ||x + y||p, we obtain ||f(x)− 2f(x/2)|| ≤ δ||x||p for all x ∈ A. Hence for each
n ∈ N and every x ∈ A, we have:

||f(x)− 2nf
( x

2n

)
|| ≤ ||f(x)− 2f(x/2)||+ 2||f(x/2)− 2f(x/22)||+ · · ·

+ 2n−1||f(x/2n−1)− 2f(x/2n)||

≤
(

1 +
2

2p − 2

)
δ||x||p = β||x||p,

where β = (1 + 2
2p−2 )δ. Now fix an x ∈ A and choose arbitrary m,n ∈

N with m > n. Then ||2mf(x/2m) − 2nf(x/2n)|| ≤ 2n(1−p)β||x||p, which
becomes arbitrary small as n →∞. On the account of the completeness of the
algebra B, this implies that the sequence {2nf(x/2n) : n ∈ N} is convergent
for each x ∈ A. Thus T is well-defined. Moreover, it satisfies in the condition
||f(x)− T (x)|| ≤ β||x||p as n →∞. It is sufficient to show that T is additive.
Replacing x by x/2n and y by y/2n in ||f(x + y)− f(x)− f(y)|| ≤ δ||x + y||p
and then multiplying both sides of the resulting inequality by 2n, we get∣∣∣∣

∣∣∣∣2nf

(
x + y

2n

)
− 2nf

( x

2n

)
− 2nf

( y

2n

)∣∣∣∣
∣∣∣∣ ≤ 2n(1−p)δ||x + y||p

for all x, y ∈ A. Since the right-hand side of this inequality tends to zero as n →
∞, it becomes apparent that the mapping T is additive. The function f(tx) is
continuous relative to t, so T (tx) is continuous in t, and it is linear. For the
uniqueness of T , suppose that there exists another S such that ||f(x)−S(x)|| ≤
β||x||p and S(x) 6= T (x). For any integer n > 2β||x||p

||T (x)−S(x)|| , it is obvious that
||T (nx) − S(nx)|| > 2β||x||p, which contradicts with the inequalities ||T (x) −
f(x)|| ≤ β||x||p and ||S(x)−f(x)|| ≤ β||x||p. Hence T is the unique linear map
such that satisfies in ||f(x)− T (x)|| ≤ β||x||p. ¤

Baak and Moslehian [4] investigate the stability of J∗-homomorphisms. In
2003, Park [14] established the stability of algebra ∗-homomorphisms on a
Banach ∗-algebra and the stability of automorphism of a unital C∗-algebra for
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admissible control functions. A similar argument as in the proofs of Park’s
theorems, we prove the following theorems.

Theorem 4.2. Let A be a Banach ∗-algebra and f : A → A a mapping with
f(0) = 0 such that, for p /∈ [1, 2] and δ > 0 we have:

(i) ||f(µx + µy)− µf(x)− µf(y)|| ≤ δ||x + y||p,
(ii) ||f(x∗)− f(x)∗|| ≤ δ||x||p, and
(iii) ||f(zw)− f(z)f(w)|| ≤ δ||z + w||p

for all µ ∈ T1 = {λ ∈ C : |λ| = 1}, all self adjoint elements z, w and all
x, y ∈ A. Then, there exists a unique algebra ∗-homomorphism T : A → A and
β > 0 such that ||f(x)− T (x)|| ≤ β||x||p for all x ∈ A.

Proof. For p < 1, ϕ(x, y) = ||x + y||p is an admissible control function and
it is proved by Park (see [14]). Now for p > 2, put µ = 1. It follows from
Theorem 4.1 that there exists a unique additive mapping T : A → A such
that the inequality ||f(x)− T (x)|| ≤ β||x||p holds. The additive mapping T is
given by T (x) = limn→∞ 2nf(x/2n) for all x ∈ A. By the assumption, for each
µ ∈ T1,

||f(µ2−n−1x + µ2−n−1x)− µf(2−n−1x)− µf(2−n−1x)||
≤ δ||2−n−1x + 2−n−1x||p = δ||2−nx||p

for all x ∈ A. Then one can show that

||µf(2−nx)− 2µf(2−n−1x)|| ≤ |µ|||f(2−nx)− 2f(2−n−1x)|| ≤ δ||2−nx||p

for all µ ∈ T1 and all x ∈ A. So

||f(2−nµx)− µf(2−nx)||
≤ ||f(2−nµx)− 2µf(2−n−1x)||+ ||2µf(2−n−1x)− µf(2−nx)||
≤ 2δ||2−nx||p

for all µ ∈ T1 and all x ∈ A. Thus limn→∞ 2n||f(2−nµx)− µf(2−nx)|| = 0 for
all µ ∈ T1 and all x ∈ A. Hence

T (µx) = lim
n→∞

2nf(2−nµx) = lim
n→∞

2nµf(2−nx) = µT (x)

for all µ ∈ T1 and all x ∈ A. Now, let λ ∈ C, λ 6= 0 and let M be an integer
greater than 4|λ|. Then |λ/M | < 1/4 < 1/3. By [12], there exist three elements
µ1, µ2, µ3 ∈ T1 such that 3λ/M = µ1 + µ2 + µ3. Also, T (x) = T (3 × 1/3x) =
3T (1/3x) for all x ∈ A. So T (1/3x) = 1/3T (x) for all x ∈ A. Thus

T (λx) = T

(
M

3
3

λ

M
x

)
= M/3T (µ1x + µ2x + µ3x) = λT (x)

for all x ∈ A. Hence the unique additive mapping is a C-linear mapping. Also,
||f(2−nx∗)− f(2−nx)∗|| ≤ δ2(1−n)p||x∗ + x||p. We get

T (x∗) = lim
n→∞

2nf(2−nx∗) = lim
n→∞

2nf(2−nx)∗
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for all x ∈ A. Now, it follows that 4n||f(2−nz2−nw) − f(2−nz)f(2−nw)|| ≤
4n2(1−n)p||z + w||p for all self-adjoint elements z, w. Therefore

lim
n→∞

4nf(2−nz2−nw)− f(2−nz)f(2−nw)|| = 0.

So T (zw) = limn→∞ 4nf(4−nzw) = T (z)T (w) for all self-adjoint elements
z, w. For elements x, y ∈ A, we have x = x+x∗

2 + ix−x∗
2i and y = y+y∗

2 + iy−y∗

2i .
Put x1 = x+x∗

2 , x2 = x−x∗
2i , y1 = y+y∗

2 and y2 = y−y∗

2i . It is clear that
x1, x2, y1, y2 are self-adjoint elements. The map T is C-linear, so T (xy) =
T (x1y1 − x2y2 + ix1y2 + ix2y1) = T (x1 + ix2)T (y1 + iy2) = T (x)T (y) for
all x, y ∈ A. Hence, the additive mapping T is an algebra ∗-homomorphism
satisfying the inequality as desired. ¤
Theorem 4.3. Let A be a Banach ∗-algebra and f : A → A a mapping with
f(0) = 0 such that for p /∈ [1, 2] and δ > 0 we have:

(i) ||f(µx + µy)− µf(x)− µf(y)|| ≤ δ(||x||p + ||y||p),
(ii) ||f(x∗)− f(x)∗|| ≤ δ||x||p, and
(iii) ||f(zw)− f(z)f(w)|| ≤ δ(||z||p + ||w||p)

for all µ ∈ T1 = {λ ∈ C : |λ| = 1}, all self adjoint elements z, w and all
x, y ∈ A. Then, there exists a unique algebra ∗-homomorphism T : A → A and
β > 0 such that ||f(x)− T (x)|| ≤ β||x||p for all x ∈ A.

Proof. The proof is similar to that of Theorem 4.2 and is omitted. ¤
Acknowledgment. The authors would like to thank the referee for his/her
kindly suggestions and corrections.
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