초록
공간 데이터 웨어하우스에서 의사 결정 지원을 위한 공간 데이터 큐브는 크기가 방대하기 때문에 이를 효율적으로 관리하고 질의 처리의 수행 속도를 높이기 위한 공간 데이터 큐브 색인 기법이 요구된다. 제안된 데이터 큐브 색인 기법들 중 Hierarchical Dwarf는 사실 테이블의 튜플 필드 값의 중복을 이용하여 큐브를 압축하여 저장 비용과 질의응답 속도 면에서는 우수하지만 공간 차원을 지원하지 않으며, OLAP-favored Search 기법은 R-tree기반으로 공간 차원에 대한 계층적 집계 값을 제공하고 공간 OLAP 연산을 지원하지만 공간 및 비공간 차원들을 통합한 의사결정을 지원하지 못한다. 본 논문에서는 통합된 다차원 개념 계층지원을 위한 데이터 큐브 색인을 제안한다. 이는 개념 계층에 대한 정보와 사실 테이블에 지장된 튜플들을 참조하여 각각의 차원에 대해 생성된 개념 계층 트리들이 연결되어 통합된 색인이다. 이 때, 중복되는 개념계층 트리가 존재할 경우 이를 공유함으로써 저장 비용을 줄인다. 특히 제안 기법은 공간 및 비공간 차원이 통합된 개념 계층 트리들을 사용하므로, 공간 및 비공간 차원에 대한 OLAP 연산 비용이 감소한다.
Most decision support functions of spatial data warehouse rely on the OLAP operations upon a spatial cube. Meanwhile, higher performance is always guaranteed by indexing the cube, which stores huge amount of pre-aggregated information. Hierarchical Dwarf was proposed as a solution, which can be taken as an extension of the Dwarf, a compressed index for cube structures. However, it does not consider the spatial dimension and even aggregates incorrectly if there are redundant values at the lower levels. OLAP-favored Searching was proposed as a spatial hierarchy based OLAP operation, which employs the advantages of R-tree. Although it supports aggregating functions well against specified areas, it ignores the operations on the spatial dimensions. In this paper, an indexing approach, which aims at utilizing the concept hierarchy of the spatial cube for decision support, is proposed. The index consists of concept hierarchy trees of all dimensions, which are linked according to the tuples stored in the fact table. It saves storage cost by preventing identical trees from being created redundantly. Also, it reduces the OLAP operation cost by integrating the spatial and aspatial dimensions in the virtual concept hierarchy.