Luminescent Polynorbornene/Quantum Dot Composite Nanorods and Nanotubes Prepared from AAO Membrane Templates

  • Oh, Se-Won (School of Chemical and Biological Engineering, Center for Functional Polymer Thin Films, Seoul National University) ;
  • Cho, Young-Hyun (School of Chemical and Biological Engineering, Center for Functional Polymer Thin Films, Seoul National University) ;
  • Char, Kook-Heon (School of Chemical and Biological Engineering, Center for Functional Polymer Thin Films, Seoul National University)
  • Published : 2009.12.25

Abstract

Luminescent polynorbornene (PNB)/quantum dot (CdSe@ZnS; QD) composite nanorods and nanotubes were successfully prepared using anodic aluminum oxide (AAO) membranes of various pore sizes as templates. To protect QDs with high quantum yield from quenching during the phosphoric acid treatment used to remove the AAO templates, chemically stable and optically clear norbornene-maleic anhydride copolymers (P(NB-r-MA)) were employed as a capping agent for QDs. The amine-terminated QDs reacted with maleic anhydride moieties in P(NB-r-MA) to form PNB-grafted QDs. The chemical- and photo-stability of QDs encapsulated with PNB copolymers were investigated by photoluminescence (PL) spectroscopy. By varying the pore size of the AAO templates from 40 to 380 urn, PNB/QD composite nanorods or nanotubes were obtained with a good dispersion of QDs in the PNB matrix.

Keywords

References

  1. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature, 370, 354 (1994) https://doi.org/10.1038/370354a0
  2. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Nature, 420, 800 (2002) https://doi.org/10.1038/nature01217
  3. M. Achermann, M. A. Petruska, S. Kos, D. M. Smith, D. D. Koleske, and V. I. Klimov, Nature, 429, 642 (2004) https://doi.org/10.1038/nature02571
  4. J. Lee, V. C. Sundar, J. R. Heine, and M. G. Bawendi, Adv. Mater., 12, 1102 (2000) https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science, 290, 314 (2000) https://doi.org/10.1126/science.290.5490.314
  6. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, Adv. Mater., 14, 317 (2002) https://doi.org/10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
  7. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, Appl. Phys. Lett., 81, 1303 (2002) https://doi.org/10.1063/1.1497708
  8. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002) https://doi.org/10.1126/science.1069156
  9. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, Science, 310, 462 (2005) https://doi.org/10.1126/science.1117908
  10. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998) https://doi.org/10.1126/science.281.5385.2013
  11. W. C. W. Chan and S. M. Nie, Science, 281, 2016 (1998) https://doi.org/10.1126/science.281.5385.2016
  12. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Nature Materials, 4, 435 (2005) https://doi.org/10.1038/nmat1390
  13. L. Brus, J. Phys. Chem., 90, 2555 (1986) https://doi.org/10.1021/j100403a003
  14. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000) https://doi.org/10.1146/annurev.matsci.30.1.545
  15. A. P. Alivisatos, Science, 271, 933 (1996) https://doi.org/10.1126/science.271.5251.933
  16. L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002) https://doi.org/10.1021/ja017002j
  17. S. F. Wuister, A. Houselt, C. M. Donega, D. Vanmaekelbergh, and A. Meijerink, Angew. Chem. Int. Ed., 43, 3029 (2004) https://doi.org/10.1002/anie.200353532
  18. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, J. Am. Chem. Soc., 125, 12567 (2003) https://doi.org/10.1021/ja0363563
  19. P. Reiss, J. Bleuse, and A. Pron, Nano Lett., 2, 781 (2002) https://doi.org/10.1021/nl025596y
  20. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett., 1, 207 (2001) https://doi.org/10.1021/nl0155126
  21. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, J. Am. Chem. Soc., 127, 7480 (2005) https://doi.org/10.1021/ja042939g
  22. Y.-K. Lee, S. M. Hong, J. S. Kim, J. H. Im, H. S. Min, E. Subramanyam, K. M. Huh, and S.-W. Park, Macromol. Res., 15, 330 (2007) https://doi.org/10.1007/BF03218795
  23. C.-M. Yang, P.-H. Liu, Y.-F. Ho, C.-Y. Chiu, and K.-J. Chao, Chem. Mater., 15, 275 (2003) https://doi.org/10.1021/cm020822q
  24. Y.-G. Guo, J.-S. Hu, H.-P. Liang, L.-J. Wan, and C.-L. Bai, Chem. Mater., 15, 4332 (2003) https://doi.org/10.1021/cm0343397
  25. H.-S. Qian, S.-H. Yu, L.-B. Luo, J.-Y. Gong, L.-F. Fei, and X.-M. Liu, Chem. Mater., 18, 2102 (2006) https://doi.org/10.1021/cm052848y
  26. C.-C. Chen, Y.-C. Liu, C.-H. Wu, C.-C. Yeh, M.-T. Su, and Y.-C. Wu, Adv. Mater., 17, 404 (2005) https://doi.org/10.1002/adma.200400966
  27. G.-M. Kim, A. Wutzler, H.-J. Radusch, G. H. Michler, P. Simon, R. A. Sperling, and W. J. Parak, Chem. Mater., 17, 4949 (2005) https://doi.org/10.1021/cm0508120
  28. M. Lahav, T. Sehayek, A. Vaskevich, and I. Rubinstein, Angew. Chem., Int. Ed., 42, 5576 (2003) https://doi.org/10.1002/anie.200352216
  29. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science, 275, 1922 (1997) https://doi.org/10.1126/science.275.5308.1922
  30. A. M. Morales and C. M. Lieber, Science, 279, 208 (1998) https://doi.org/10.1126/science.279.5348.208
  31. J. Jang and H. Yoon, Adv. Mater., 16, 799 (2004) https://doi.org/10.1002/adma.200306567
  32. K. J. Lee, J. H. Oh, Y. Kim, and J. Jang, Chem. Mater., 18, 5002 (2006) https://doi.org/10.1021/cm0611542
  33. C. B. Kowollik, H. Dalton, T. P. Davis, and M. H. Stenzel, Angew. Chem., Int. Ed., 42, 3664 (2003) https://doi.org/10.1002/anie.200351612
  34. C. R. Martin, Chem. Mater., 8, 1739 (1996) https://doi.org/10.1021/cm960166s
  35. S. Schlecht, S. Tan, M. Yosef, R. Dersch, J. H. Wendorff, Z. Jia, and A. Schaper, Chem. Mater., 17, 809 (2005) https://doi.org/10.1021/cm048417h
  36. W. K. Bae, K. Char, H. Hur, and S. Lee, Chem. Mater., 20, 531 (2008) https://doi.org/10.1021/cm070754d
  37. H. Masuda and K. Fukuda, Science, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  38. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc., 144, L127 (1997) https://doi.org/10.1149/1.1837634
  39. R. H. Grubbs and W. Tumas, Science, 243, 907 (1989) https://doi.org/10.1126/science.2645643
  40. T. Hino and T. Endo, Macromolecules, 36, 5902 (2003) https://doi.org/10.1021/ma030136s
  41. C. Janiak and P. G. Lassahn, Macromol. Rapid Commun., 22, 479 (2001) https://doi.org/10.1002/1521-3927(20010401)22:7<479::AID-MARC479>3.0.CO;2-C
  42. S. J. Diamanti, V. Khanna, A. Hotta, D. Yamakawa, F. Shimizu, E. J. Kramer, G. H. Fredrickson, and G. C. Bazan, J. Am. Chem. Soc., 126, 10528 (2004) https://doi.org/10.1021/ja047231g
  43. D. P. Sanders, E. F. Connor, and R. H. Grubbs, Macromolecules, 36, 1534 (2003) https://doi.org/10.1021/ma021131i
  44. J. Lipian, R. A. Mimna, J. C. Fondran, D. Yandulov, R. A. Shick, B. L. Goodall, L. F. Rhodes, and J. C. Huffman, Macromolecules, 35, 8969 (2002) https://doi.org/10.1021/ma0209287
  45. N. R. Grove, P. A. Kohl, S. A. Bidstrup Allen, S. Jayaraman, and R. Shich, J. Polym. Sci. Part B: Polym. Phys., 37, 3003 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3003::AID-POLB10>3.0.CO;2-T
  46. S. Oh, J.-K. Lee, P. Theato, and K. Char, Chem. Mater., 20, 6974 (2008) https://doi.org/10.1021/cm801421w
  47. D. W. Yoo, S.-J. Yang, J.-K. Lee, J. Park, and K. Char, Macromol. Res., 14, 107 (2006) https://doi.org/10.1007/BF03219076
  48. J. Aldana, Y. A. Wang, and X. Peng, J. Am. Chem. Soc., 123, 8844 (2001) https://doi.org/10.1021/ja016424q
  49. V. Karabanovas, E. Zakarevicius, A. Sukackaite, G. Streckytea, and R. Rotomskis, Photochem. Photobiol. Sci., 7, 725 (2008) https://doi.org/10.1039/b707920f
  50. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 101, 9463 (1997) https://doi.org/10.1021/jp971091y
  51. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, Nano Lett., 4, 11 (2004) https://doi.org/10.1021/nl0347334