New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G. (Department of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University) ;
  • Lee, Meyoung-Jin (Department of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University) ;
  • Song, Myung-Kwan (Department of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University) ;
  • Jin, Sung-Ho (Department of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University) ;
  • Lee, Jae-Wook (Department of Chemistry, Dong-A University) ;
  • Lee, Chan-Woo (Department of Chemistry, University of Ulsan) ;
  • Gal, Yeong-Soon (Polymer Chemistry Lab, Kyungil University) ;
  • Shim, Hyo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Yong-Ku (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Gi-Won (Center for Energy Materials Research, Materials Science and Technology Division, Korea Institute of Science and Technology) ;
  • Kim, Kyung-Kon (Center for Energy Materials Research, Materials Science and Technology Division, Korea Institute of Science and Technology) ;
  • Park, Nam-Gyu (Center for Energy Materials Research, Materials Science and Technology Division, Korea Institute of Science and Technology) ;
  • Kim, Suhk-Mann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2009.12.25

Abstract

Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Keywords

References

  1. B. O’Regan and M. Gratzel, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. M. Gratzel, Nature, 414, 338 (2001) https://doi.org/10.1038/35104607
  3. R. D. McConnell, Renewable Sustainable Energy Rev., 6, 273 (2002)
  4. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, J. Am. Chem. Soc., 127, 16835 (2005) https://doi.org/10.1021/ja052467l
  5. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, Chem. Comm., 374 (2002)
  6. H. X. Wang, H. Li, B. F. Xue, Z. X. Wang, Q. B. Meng, and L. Q. Chen, J. Am. Chem. Soc., 127, 6394 (2005) https://doi.org/10.1021/ja043268p
  7. S. Mural, S. Mikoshiba, H. Sumino, T. Kato, and S. Hayase, Chem. Comm., 1534 (2003)
  8. B. O’Regan and D. T. Schwartz, Chem. Mater., 10, 1501 (1998) https://doi.org/10.1021/cm9705855
  9. B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, Chem. Mater., 14, 5023 (2002) https://doi.org/10.1021/cm020572d
  10. U. Bach, D. Lupo, P. Comte, and M. Gratzel, Nature, 395, 583 (1998) https://doi.org/10.1038/26936
  11. R. Senadeera, N. Fukuri, and Y. Satio, Chem. Comm., 2259 (2005)
  12. M. Gratzel, Prog. Photovoltaics, 8, 171 (2000) https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  13. A. F. Nogueira, C. Longo, and M. A. De Paoli, Coord. Chem. Rev., 248, 1455 (2004) https://doi.org/10.1016/j.ccr.2004.05.018
  14. H. Lee, W. Kim, S. Park, W. Shin, S. Jin, J. Lee, S. Han, K. Jung, and M. Kim, Macromol. Symp., 235, 230 (2006) https://doi.org/10.1002/masy.200650328
  15. M. R. Kim, W. S. Shin, W. S. Kim, H. J. Lee, S. H. Park, J. K. Lee, and S. H. Jin, Mol. Cryst. Liq. Cryst., 462, 91 (2007) https://doi.org/10.1080/15421400601010789
  16. W. S. Shin, S. C. Kim, S. J. Lee, H. S. Jeon, M. K. Kim, B. Vijaya Kumar Naidu, S. H. Jin, J. K. Lee, J. W. Lee, and Y. S. Gal, J. Polym. Sci. Part A: Polym. Chem., 45, 1394 (2007) https://doi.org/10.1002/pola.21909
  17. M. A. Karim, Y. R. Cho, J. S. Park, S. C. Kim, H. J. Kim, J. W. Lee, Y. S. Gal, and S. H. Jin, Chem. Comm., 1929 (2008)
  18. F. Cao, G. Oskam, and P. C. Searson, J. Phys. Chem. B, 99, 17071 (1995) https://doi.org/10.1021/j100047a003
  19. O. A. Ileperuma, M. A. K. L. Dissanayake, and S. Somasundaram, Electrochim. Acta, 47, 2801 (2002) https://doi.org/10.1016/S0013-4686(02)00166-4
  20. M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, N. G. Park, J. S. Hong, and K. J. Kim, J. Electrochem. Soc., 151, E257 (2004) https://doi.org/10.1149/1.1759698
  21. J. Wu, Z. Lan, J. Lin, M. Huang, S. Hao, T. Sato, and S. Yin, Adv. Funct. Mater., 19, 4006 (2007) https://doi.org/10.1002/adma.200602886
  22. T. Kato, A. Okazaki, and S. Hayase, Chem. Comm., 363 (2005)
  23. V. Suryanarayanan, K. M. Lee, W. H. Ho, H. C. Chen, and K. C. Ho, Sol. Energy Mater. Sol. Cells, 91, 1467 (2007) https://doi.org/10.1016/j.solmat.2007.03.008
  24. P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, Chem. Comm., 2972 (2002)
  25. P. S. Wang, S. M. Zakeeruddin, and M. Gratzel, J. Fluorine Chem., 125, 1241 (2004) https://doi.org/10.1016/j.jfluchem.2004.05.010
  26. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nat. Mater., 2, 402 (2003) https://doi.org/10.1038/nmat904
  27. J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Comm., 965 (1992)
  28. T. Welton, Chem. Rev., 99, 2071 (1999) https://doi.org/10.1021/cr980032t
  29. M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, J. Am. Chem. Soc., 127, 4976 (2005) https://doi.org/10.1021/ja045155b
  30. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. Mac-Farlane, and M. Gratzel, J. Am. Chem. Soc., 126, 13590 (2004) https://doi.org/10.1021/ja045013h
  31. N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M. Watanabe, and S. Yanagida, Chem. Comm., 740 (2005)
  32. R. Kawano, M. K. Nazeeruddin, A. Sato, M. Gratzel, and M. Watanabe, Electrochem. Commun., 9, 1134 (2007) https://doi.org/10.1016/j.elecom.2007.01.005