DOI QR코드

DOI QR Code

Three-Dimensional Pose Estimation of Neighbor Mobile Robots in Formation System Based on the Vision System

비전시스템 기반 군집주행 이동로봇들의 삼차원 위치 및 자세 추정

  • 권지욱 (아주대학교 전자공학부) ;
  • 박문수 (대한항공 MUAV 개발사업단 비행체개발팀) ;
  • 좌동경 (아주대학교 전자공학부) ;
  • 홍석교 (아주대학교 전자공학부)
  • Published : 2009.12.01

Abstract

We derive a systematic and iterative calibration algorithm, and position and pose estimation algorithm for the mobile robots in formation system based on the vision system. In addition, we develop a coordinate matching algorithm which calculates matched sequence of order in both extracted image coordinates and object coordinates for non interactive calibration and pose estimation. Based on the results of calibration, we also develop a camera simulator to confirm the results of calibration and compare the results of simulations with those of experiments in position and pose estimation.

Keywords

References

  1. M. Haid and J. Breitenbach, 'Low cost inertial orientation tracking with Kalman filter,' Applied Mathematics and Computation, vol. 153, no. 2, pp, 567-575, Jun. 2004 https://doi.org/10.1016/S0096-3003(03)00656-8
  2. N. S. Kumar and T. Jann, 'Estimation of attitudes from a lowcost miniaturized inertial platform using Kalman filter-based sensor fusion algorithm,' Sadhana-Academic Proceedings in Engineering Sciences, vol. 29, pp. 217-235, Apr. 2004 https://doi.org/10.1007/BF02703733
  3. J. Garc$\acute{i}$a, J. Carb$\acute{o}$, and J. M. Molina, 'Agent-based coordination of cameras,' International Journal of Computer Science and Applications, vol. 2, no. 1, pp. 33-17, 2005
  4. H.lshigoro, 'Distributed vision system: a perceptual information infrastructure for robot navigation,' Proc. IJCAI, pp. 36-41, 1997
  5. N. Ukita and T. Matsuyama, 'Real-time cooperative multi-target tracking by communicating active vision agents,' Computer Vision and Image Understanding, vol. 2002, no. 2, pp. 29-36, 2002
  6. S. Y. Chiem and E. Cervera, 'Vision-based robot formations with Bzier trajectories,'in Intelligent Autonomous Systems (F.G. et al., ed.), vol. 8,pp.191-198,IOS Press, 2004
  7. O. A. A. Orqueda and R. Fierro, 'Visual tracking of mobile robots in formation,' Proc. of American Control Conference, pp.5940-5945, USA, Jul. 2007
  8. A. K. Das, R. Fierro, V. Jumar, J. P, Ostrowski, J. Spletzer, and C. J. Taylor, 'A vision-based formation control framework,' IEEE Trans. on Robotics and Automation, vol. 18, no. 5, Oct. 2002
  9. N. Cowan, O. Shakemia, R, Vidal, and S. Sastry, 'Vision-based follow-the-leader,' Proc. of Intl. Conference on Intelligent Robots and Systems, pp. 1796-1801, USA, Oct. 2003
  10. R. Vidal, O. Shakemia, and S. Sastry, 'Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation,' Proc. of the IEEE International Conference on Robotics and Automation, pp. 583- 589, Taiwan, Sep. 2003
  11. D. Cruz, J. McClintock, B. Perteet, O. A. A. Orqueda, C. Yuan, and R. Fierro, 'Decentralized cooperative control,' IEEE Control Systems Magazine, vol. 27, no. 3, pp. 58-78, Jun. 2007 https://doi.org/10.1109/MCS.2007.365004
  12. O. Faugeras, Computer Vision. a Geometric Viewpoint, MIT Press, 1993
  13. R. Tsai, 'A Versatile camera calibration techniquefor highaccuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses,' IEEE J. of Robotics and Automation, vol. 3, no.4,pp.323-344, 1987 https://doi.org/10.1109/JRA.1987.1087109
  14. Z. Zhang, 'A flexible new technique for camera calibration,' IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1330-1334, 2000 https://doi.org/10.1109/34.969121
  15. M. M. Y. Chang and K. H. Wong, 'Model reconstruction and pose acquisition using extended Lowe's method,' IEEE Trans. Multimedia, vol. 7, no. 2, pp. 253-260, 2005 https://doi.org/10.1109/TMM.2005.843344
  16. X. Zhang, S. Fronz, and N. Navab, 'Visual marker detection and decoding in AR systems: A comparative study,' Int. Symp. Mixed and Augmented Reality, 2002