Abstract
Image contrast enhancement has an important role in image processing applications. Conventional contrast enhancement techniques, histogram stretching and histogram equalization, and many methods based on histogram equalization often fail to produce satisfactory results for broad variety of low-contrast images. So, this paper proposes a new image contrast enhancement method based on the clustering method. The number of cluster of histogram is found by analysing the histogram of original image. The histogram components is classified using K-means algorithm. And then these histogram components are performed histogram stretching and histogram equalization selectively by comparing cluster range with pixel rate of cluster. From the expremental results, the proposed method was more effective than conventional contrast enhancement techniques.
영상 대비 향상은 영상 처리 분야에서 중요한 역할을 한다. 히스토그램 스트레칭이나 히스토그램 균등화 등 기존 대비 향상 기법들과 히스토그램 균등화 기반의 수많은 방법들은 저대비에 소수의 화소들이 넓게 퍼져 있는 영상에 대해서 만족할만한 결과를 내지 못한다. 따라서 본 논문은 군집화 방법에 기반한 새로운 영상 대비 향상 기법을 제안한다. 히스토그램의 군집수는 원영상의 히스토그램을 분석하여 얻을 수 있다. 히스토그램 성분들을 K-means 알고리즘을 이용하여 군집화한다. 그리고 히스토그램 군집 범위와 군집의 화소수 비율을 비교하여 히스토그램 스트레칭과 히스토그램 균등화를 선택적으로 적용한다. 실험 결과로부터 제안한 방법이 기존의 대비 향상 기법들보다 더 효과적임을 확인할 수 있었다.