Genotoxic and Neurotoxic Potential in Marine Fishes Exposed to Sewage Effluent from a Wastewater Treatment Plant

  • Park, So-Yun (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Kim, So-Jung (Kyeongbuk Institute for Marine Bio-Industry) ;
  • Rhee, Yong (Department of Genetic Engineering, SungKyunKwan University) ;
  • Yum, Seung-Shic (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Kwon, Tae-Dong (Department of Entomology, Ohio State University) ;
  • Lee, Taek-Kyun (South Sea Environment Research Department, Korea Ocean Research and Development Institute)
  • Published : 2009.09.30

Abstract

Concentrations of industrial, agricultural and natural chemicals have been increasing in secondary effluents without their combined sub-lethal effects having been elucidated. In this study, two assays (the comet and acetylcholinesterase assays) were combined to evaluate the genotoxic and neurotoxic effects of effluent from the Noksan wastewater treatment plant (WWTP) on two local marine fish species (flounder and sea eel). The fish were exposed to WWTP secondary effluent that had been diluted with filtered seawater to final concentrations of 1%, 10% and 50%. Analysis of fish samples collected 3 and 5 days after exposure showed that DNA damage occurred in flounder exposed to 50% effluent and in sea eels exposed to 10% or 50% effluent. Furthermore, it was found that acetylcholinesterase (EC:3.1.1.7, AChE) activity decreased in both species when exposed to 10% effluent, indicating the presence of large amounts of genotoxic and neurotoxic chemicals in the effluent. Our results indicate that the comet and AChE assays are promising tools for biomonitoring of secondary effluents.

Keywords

References

  1. Daughton, C. G. & Ternes, T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107 Suppl 6:907-938 (1999) https://doi.org/10.1289/ehp.99107s6907
  2. Kummerer, K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review. Chemosphere 45:957-969 (2001) https://doi.org/10.1016/S0045-6535(01)00144-8
  3. Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207-233 (2003) https://doi.org/10.1016/S0048-9697(03)00141-4
  4. Kopecka, J. et al. Measurements of biomarker levels in flounder (Platichthys flesus) and blue mussel (Mytilus trossulus) from the Gulf of Gdansk (southern Baltic). Mar Pollut Bull 53:406-421 (2006) https://doi.org/10.1016/j.marpolbul.2006.03.008
  5. Ait Alla, A., Mouneyrac, C., Durou, C., Moukrim, A. & Pellerin, J. Tolerance and biomarkers as useful tools for assessing environmental quality in the Oued Souss estuary (Bay of Agadir, Morocco). Comp Biochem Physiol C Toxicol Pharmacol 143:23-29 (2006) https://doi.org/10.1016/j.cbpc.2005.11.015
  6. Liney, K. E., Jobling, S., Shears, J. A., Simpson, P. & Tyler, C. R. Assessing the sensitivity of different life stages for sexual disruption in roach (Rutilus rutilus) exposed to effluents from wastewater treatment works. Environ Health Perspect 113:1299-1307 (2005) https://doi.org/10.1289/ehp.7921
  7. Matsumoto, S. T. et al. Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29:148-158 (2006) https://doi.org/10.1590/S1415-47572006000100028
  8. O'Neill, A. J., Galloway, T. S., Browne, M. A., Dissanayake, A. & Depledge, M. H. Evaluation of toxicity in tributaries of the Mersey estuary using the isopod Asellus aquaticus (L.). Mar Environ Res 58:327-331 (2004) https://doi.org/10.1016/j.marenvres.2004.03.076
  9. Rajaguru, P., Suba, S., Palanivel, M. & Kalaiselvi, K. Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ Mol Mutagen 41:85-91 (2003) https://doi.org/10.1002/em.10134
  10. Ma, T., Wan, X., Huang, Q., Wang, Z. & Liu, J. Biomarker responses and reproductive toxicity of the effluent from a Chinese large sewage treatment plant in Japanese medaka (Oryzias latipes). Chemosphere 59:281-288 (2005) https://doi.org/10.1016/j.chemosphere.2004.11.033
  11. Dizer, H., Wittekindt, E., Fischer, B. & Hansen, P. D. The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers. Chemosphere 46:225-233 (2002) https://doi.org/10.1016/S0045-6535(01)00062-5
  12. Kumar, V., Chakraborty, A., Viswanath, G. & Roy, P. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: their influence on reproductive processes and systemic toxicity in male rats. Toxicol Appl Pharmacol 226:60-73 (2008) https://doi.org/10.1016/j.taap.2007.08.023
  13. Shugart, L. R., McCarthy, J. F. & Halbrook, R. S. Biological markers of environmental and ecological contamination: an overview. Risk Anal 12:353-360 (1992) https://doi.org/10.1111/j.1539-6924.1992.tb00687.x
  14. Depledge, M. H., Aagaard, A. & Gyorkos, P. Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Mar Pollut Bull 31:19-27 (1995) https://doi.org/10.1016/0025-326X(95)00006-9
  15. Soupilas, A., Papadimitriou, C. A., Samaras, P., Gudulas, K. & Petridis, D. Monitoring of industrial effluent ecotoxicity in the greater Thessaloniki area. Desalination 224:261-270 (2008) https://doi.org/10.1016/j.desal.2007.07.003
  16. Huschek, G. & Hansen, P. D. Ecotoxicological classification of the Berlin River system using bioassays in respect to the European water framework directive. Environ Monit Assess 121:15-31 (2006) https://doi.org/10.1007/s10661-005-9061-0
  17. Moreira, S. M. & Guilhermino, L. The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Environ Monit Assess 105:309-325 (2005) https://doi.org/10.1007/s10661-005-3854-z
  18. Herbert, A. & Zahn, R. K. Monitoring DNA damage in Mytilus galloprovincialis and other aquatic animals. Z Angew Zool 1:13-33 (1990)
  19. Shugart, L. R. Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay. Aquat Toxicol 13:43-52 (1988) https://doi.org/10.1016/0166-445X(88)90071-9
  20. Kurelec, B. The multixenobiotic resistance mechanism in aquatic organisms. Crit Rev Toxicol 22:23-43 (1992) https://doi.org/10.3109/10408449209145320
  21. De la Torre, F. R., Salibian, A. & Ferrari, L. Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environ Pollut 109:277-282 (2000) https://doi.org/10.1016/S0269-7491(99)00263-8
  22. Matozzo, V., Tomei, A. & Marin, M. G. Acetylcholinesterase as a biomarker of exposure to neurotoxic compounds in the clam Tapes philippinarum from the Lagoon of Venice. Mar Pollut Bull 50:1686-1693 (2005) https://doi.org/10.1016/j.marpolbul.2005.07.011
  23. Galgani, F., Bocquene, G. & Cadiou, Y. Evidence of variation in cholinesterase activity in fish along a pollution gradient in the north sea. Mar Ecol Prog Ser 91:77-82 (1992) https://doi.org/10.3354/meps091077
  24. Payne, J. F., Mathieu, A., Melvin, W. & Fancey, L. L. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in newfoundland. Mar Pollut Bull 32:225-231 (1996) https://doi.org/10.1016/0025-326X(95)00112-Z
  25. Sturm, A., da Silva de Assis, H. C. & Hansen, P. D. Cholinesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar Environ Res 47: 389-398 (1999) https://doi.org/10.1016/S0141-1136(98)00127-5
  26. Burgeot, T. et al. in Biomarkers in Marine Organisms, 179-213 (Elsevier Science, Amsterdam; 2001)
  27. Costa, J. L., Assis, C. A., Almeida, P. R., Moreira, F. M. & Costa, M. J. On the food of the European eel, Anguilla anguilla (L.), in the upper zone of the Tagus estuary, Portugal. J Fish Biol 41:841-850 (1992) https://doi.org/10.1111/j.1095-8649.1992.tb02712.x
  28. Goks$\varnothing$yr, A. et al. Biomarker responses in flounder (Platichthys flesus) and their use in pollution monitoring. Mar Pollut Bull 33:36-45 (1996) https://doi.org/10.1016/S0025-326X(96)00131-2
  29. Tice, R. R. et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206-221 (2000) https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  30. Wilson, J. T., Pascoe, P. L., Parry, J. M. & Dixon, D. R. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutat Res 399:87-95 (1998) https://doi.org/10.1016/S0027-5107(97)00268-6
  31. Woo, S., Kim, S., Yum, S., Yim, U. H. & Lee, T. K. Comet assay for the detection of genotoxicity in blood cells of flounder (Paralichthys olivaceus) exposed to sediments and polycyclic aromatic hydrocarbons. Mar Pollut Bull 52:1768-1775 (2006) https://doi.org/10.1016/j.marpolbul.2006.08.027
  32. Kirk, L. A., Tyler, C. R., Lye, C. M. & Sumpter, J. P. Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works. Environ Toxicol Chem 21:972-979 (2002) https://doi.org/10.1002/etc.5620210511
  33. Ternes, T. A. et al. Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81-90 (1999) https://doi.org/10.1016/S0048-9697(98)00334-9
  34. Thomas, K. V. et al. An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries. Environ Toxicol Chem 21:1456-1461 (2002) https://doi.org/10.1002/etc.5620210717
  35. Aparicio, I., Santos, J. L. & Alonso, E. Simultaneous sonication-assisted extraction, and determination by gas chromatography-mass spectrometry, of di-(2-ethyl-hexyl)phthalate, nonylphenol, nonylphenol ethoxylates and polychlorinated biphenyls in sludge from wastewater treatment plants. Anal Chim Acta 584:455-461 (2007) https://doi.org/10.1016/j.aca.2006.11.039
  36. Ra, J. S., Lee, B. C., Chang, N. I. & Kim, S. D. Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bull Environ Contam Toxicol 80:196-200 (2008) https://doi.org/10.1007/s00128-007-9344-y
  37. Tonkes, M., de Graaf, P. J. F. & Graansma, J. Assessment of complex industrial effluents in the netherlands using a whole effluent toxicity (or wet) approach. Water Sci Technol 39:55-61 (1999) https://doi.org/10.1016/S0273-1223(99)00253-X
  38. Aitken, R. J. et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037-1046 (1998) https://doi.org/10.1095/biolreprod59.5.1037
  39. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  40. Steinert, S. A. Contribution of apoptosis to observed DNA damage in mussel cells. Mar Environ Res 42: 253-259 (1996) https://doi.org/10.1016/0141-1136(95)00056-9
  41. Rappaport, F., Fischl, J. & Pinto, N. An improved method for the estimation of cholinesterase activity in serum. Clin Chim Acta 4:227-230 (1959) https://doi.org/10.1016/0009-8981(59)90134-2