DOI QR코드

DOI QR Code

Fiber-Optic Interleaving Filter Based on Polarization Beam Splitter and Fiber Coupler

편광 빔 분배기와 광섬유 결합기를 이용한 광섬유 인터리빙 필터

  • 장욱 (부경대학교 전기공학과 대학원) ;
  • 이용욱 (부경대학교 전기공학과)
  • Published : 2009.10.31

Abstract

By incorporating a polarization beam splitter and fiber coupler, we propose a fiber-optic multiwavelength-switchable interleaving filter that can function as a polarizaiton-independent transmission or reflection-type one. The proposed filter consists of a polarizaiton beam splitter and a Sagnac birefringence loop that is composed of a 50:50 coupler, polarizaiton-maintaining fibers, and two quarter-wave plates. In the proposed filter, a transmission-type filter with a channel isolation > 18[dB] or a reflection-type one with a channel isolation ~3[dB], whose channel spacing and switching displacement were 0.8 and 0.4[nm] in common, respectively, could be obtained. Channel interleaving operation could be performed by the proper control of waveplates within the Sagnac birefringence loop.

본 논문에서는 편광 빔 분배기와 광섬유 결합기를 이용하여, 입력 편광에 무관한 반사형 및 투과형 인터리빙 필터로 동작할 수 있는 다파장 스위칭 가능한 광섬유 인터리빙 필터를 제안한다. 제안된 필터는 50:50 광섬유 결합기, 편광 유지 광섬유, 그리고 2개의 1/4 파장판으로 구성되는 Sagnac 복굴절 필터의 출력 양단을 편광 빔 분배기의 출력 양단과 연결함으로써 구성하였다. 제작된 필터는 반사형 및 투과형 모두 0.8[nm]의 채널 간격을 가지는 것으로 측정되었으며, 필터 내부의 1/4 파장판의 방위각을 조절함으로써 0.4[nm]의 스위칭 변위를 갖는 인터리빙 동작이 가능하였다. 또한, 필터의 채널 고립도는 반사형과 투과형에서 각각 ~3[dB]와 > 18[dB]로 측정되었다.

Keywords

References

  1. X. Fang and R. O. Claus, "Polarization-independent all-fiber wavelength division multiplexer based on a Sagnac interferometer," Optics Letters, Vol.20, No.20, pp. 2146-2148, 1995 https://doi.org/10.1364/OL.20.002146
  2. X. Fang, H. Ji, C. T. Allen, K. Demarest, and L. Pelz, "A compound high-order polarization-independent birefringence filter using Sagnac interferometers," IEEE Photonics Technology letters, Vol.9, No.4, pp. 458-460, 1997 https://doi.org/10.1109/68.559387
  3. S. Chung, J. Kim, B.-A Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization-maintaining fiber loop mirror," IEEE Photonics Technology Letters, Vol.13, No.12, pp. 1343-1345, 2001 https://doi.org/10.1109/68.969902
  4. S. Chung, B.-A. Yu, and B. Lee, "Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation," IEEE photonics Technology Letters, Vol.15, No.5, pp. 715-717, 2003 https://doi.org/10.1109/LPT.2003.809918
  5. Y. Shiquan, l. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, "Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror," IEEE Photonics Technology Letters, Vol.14, No.6, pp. 774-776, 2002 https://doi.org/10.1109/LPT.2002.1003089
  6. R. C. Jones, "New calculus for tre treatment of optical system," Journal of Optics Society of America, vol. 31, pp. 488-492, 1941 https://doi.org/10.1364/JOSA.31.000488
  7. Y. W. Lee, J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polari-zation-maintaining fiber loop mirror and polarization beam splitter," IEEE Photonics Technology Letters, Vol.16, No.1, pp. 54-56, 2004 https://doi.org/10.1109/LPT.2003.819414
  8. F. Heismann and M. S. Whalen, "Broadband reset-free automatic polarization controller," Electronics Letters, Vol.27, No.4, pp. 377-379, 1991 https://doi.org/10.1049/el:19910237
  9. X. P. Dong, S. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength-doped fiber laser basad on a high-birefringence fiber loop mirror," Electronics Letters, Vol.36, No.19, pp. 1600-1610, 2000 https://doi.org/10.1049/el:20001150
  10. S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, "Channel-spacing- and wavelength-tunable multiwa-velength fiber ring laser using semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol.18, No.21, pp. 2302-2304, 2006 https://doi.org/10.1109/LPT.2006.885297