DOI QR코드

DOI QR Code

소아청소년기 당뇨병성 신병증 (II) ; 병리 소견 및 병태생리를 중심으로

Diabetic Nephropathy in Childhood and Adolescence (II) ; Pathology and Pathophysiology

  • 하태선 (충북대학교 의과대학 소아과학교실)
  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine, Chungbuk National University)
  • 발행 : 2009.10.31

초록

당뇨병성 신병증은 최근 우리나라를 포함한 서구 사회에서는 만성 신부전의 가장 많은 원인 중 하나이며, 꾸준히 증가추세이다. 조직학적으로는, 사구체, 세뇨간질, 소동맥 등 신장의 주요 부위에 병변이 나타나는데, 특징적으로 사구체 기저막의 비후와 족세포의 변화와 함께 사구체 경화, 소동맥의 유리질 경화와 세뇨간질 부위에 섬유화 등이 나타난다. 당뇨병성 신병증은 혈역학적 인자들과 대사성 인자들 간의 복잡한 상호작용의 결과로 일어난다. 고혈당은 혈류역학적 요소로 고혈압과 함께 사구체내압의 증가와 혈관활성물질의 활성화에 함께, 비혈역학적 경로들, 예를 들면, 후기 당화합 최종생성물 생성, 세포 내 신호전달체계와 물질, 시토카인, 산화 스트레스 등 다양한 원인들을 활성화시킨다. 이러한 대사적, 혈류역학적인 인자들은 신장의 알부민 투과성을 증가시키고 세포 외 기질의 축적을 일으키며 결과적으로 증가된 단백뇨, 사구체경화와 세뇨관간질의 섬유화를 일으키게 된다.

Diabetic nephropathy is a major cause of chronic renal failure in developing countries, and the prevalence rate has markedly increased during the past decade. Diabetic nephropathy shows various specific histological changes not only in the glomeruli but also in the tubulointerstitial region. In the early stage, the effacement of podocyte foot processes and thickened glomerular basement membrane (GBM) is noticed even at the stage of microalbuminuria. Nodular, diffuse, and exudative lesions, so-called diabetic glomerulosclerosis, are well known as glomerular lesions. Interstitial lesions also exhibit fibrosis, edema, and thickened tubular basement membrane. Diabetic nephropathy is considered to be multifactorial in origin with increasing evidence that one of the major pathways involved in the development and progression of diabetic nephropathy as a result of hyperglycemia. Hyperglycemia induces renal damage directly or through hemodynamic alterations, such as, glomerular hyperfiltration, shear stress, and microalbuminuria. Chronic hyperglycemia also induces nonhemodynamic dysregulations, such as, increased production of advanced glycosylation endproducts, oxidative stress, activation of signal pathway, and subsequent various cytokines. Those pathogenic mechanisms resulted in extracellular matrix deposition including mesangial expansion and GBM thickening, glomerular hypertrophy, inflammation, and proteinuria. In this review, recent opinions on the histopathologic changes and pathophysiologic mechanisms leading to initiation and progression of diabetic nephropathy will be introduced.

키워드

참고문헌

  1. US Renal Data System: USRDS 2008 Annual Data Report. Bethesda MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 2007.
  2. Stengel B, Billon S, Van Dijk PC, Jager KJ, Dekker FW, Simpson K, et al. Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe. Nephrol Dial Transplant 2003;18:1824-33. https://doi.org/10.1093/ndt/gfg233
  3. ESRD Registry Committee, Korean Society of Nephrology. Current renal replacement therapy in Korea. Korean J Nephrol (Abstract) 2007;26:459-81.
  4. Ha T-S. Diabetic nephropathy in childhood and adolescence (I); Clinical features. J Korean Soc Pediatr Nephrol 2009;13:1-13. https://doi.org/10.3339/jkspn.2009.13.1.1
  5. Taft JL, Billson VR, Nankervis A, Kincaid-Smith P, Martin FIR. A clinical-histological study of individuals with diabetes mellitus and proteinuria. Diabet Med 1990;7:215-21. https://doi.org/10.1111/j.1464-5491.1990.tb01373.x
  6. Parving H-H, Mauer M, Ritz E. Diabetic nephropathy. In: Brenner BM ed. The Kidney. WE Saunders, Philadelphia, PA: 2008; 1265-98.
  7. Mauer SM, Steffes MW, Connett J, Najarian JS, Sutherland DE, Barbosa J. The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes 1983;32:948-52. https://doi.org/10.2337/diabetes.32.10.948
  8. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984;74:1143-55. https://doi.org/10.1172/JCI111523
  9. Hayashi H, Karasawa R, Inn H, Saitou T, Ueno M, Nishi S, et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus. Kidney Int 1992;41:749-57. https://doi.org/10.1038/ki.1992.117
  10. Osterby R. Morphometric studies of the peripheral glomerular basement membrane in early juvenile diabetes. I. Development of initial basement membrane thickening. Diabetologia 1972;8:84-92. https://doi.org/10.1007/BF01235631
  11. Osterby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl 1974;574:3-82.
  12. O'Connor AS, Schelling JR. Diabetes and the kidney. Am J Kidney Dis 2005;46:766-73. https://doi.org/10.1053/j.ajkd.2005.05.032
  13. Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 1994;43:1358-64. https://doi.org/10.2337/diabetes.43.11.1358
  14. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007;27:195-207. https://doi.org/10.1016/j.semnephrol.2007.01.012
  15. Nishi S, Ueno M, Hisaki S, Iino N, Iguchi S, Oyama Y, et al. Ultrastructural characteristics of diabetic nephropathy. Med Electron Microsc 2000;33:65-73. https://doi.org/10.1007/s007950070004
  16. Kimmelstiel P, Wilson C. Intercapillary lesions in glomeruli of kidney. Am J Pathol 1936;12:83-97.
  17. Glick AD, Jacobson HR, Haralson MA. Mesangial deposition of type I collagen in human glomerulosclerosis. Hum Pathol 1992;23:1373-9. https://doi.org/10.1016/0046-8177(92)90057-A
  18. Makino H, Shikata K, Wieslander J, Wada J, Kashihara N, Yoshioka K, et al. Localization of fibril/microfibril and basement membrane collagens in diabetic glomerulosclerosis in type 2 diabetes. Diabet Med 1994;11:304-11. https://doi.org/10.1111/j.1464-5491.1994.tb00276.x
  19. Imai N, Nishi S, Suzuki Y, Karasawa R, Ueno M, Shimada H, et al. Histological localization of advanced glycosylation end products in the progression of diabetic nephropathy. Nephron 1997;76:153-60. https://doi.org/10.1159/000190163
  20. Shioi A, Fujimoto T. Disorganization process in the development of diabetic nodular glomerulosclerosis. Tohoku J Exp Med 1989;159:257-75. https://doi.org/10.1620/tjem.159.257
  21. Murussi M, Baglio P, Gross JL, Silveiro SP. Risk factors for microalbuminuria and macroalbuminuria in type 2 diabetic patients: a 9-year follow-up study. Diabetes Care 2002;25:1101-3. https://doi.org/10.2337/diacare.25.6.1101
  22. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis 2002;39:713-20. https://doi.org/10.1053/ajkd.2002.31988
  23. Hong D, Zheng T, Jia-qing S, Jian W, Zhi-hong L, Lei-shi L. Nodular glomerular lesion: a later stage of diabetic nephropathy- Diabetes Res Clin Pract 2007;78:189-95. https://doi.org/10.1016/j.diabres.2007.03.024
  24. Ueno M, Imai N, Nishi S, Arakawa M. Diabetic capsular drop, fibrin cap, and the other exudative lesions (in Japanese). Nippon Rinsho Suppl 1997;17:213-6.
  25. Farquhar MG, Hopper J, Moon HD. Diabetic glomerulosclerosis: electron and light microscopic studies. Am J Pathol 1959;35:721-35.
  26. Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 1980;167:204-16. https://doi.org/10.1016/S0344-0338(80)80051-3
  27. Giordano C, De Santo NG, Lamendola MG, Capodicasa G. The genesis of the Armanni-Ebstein lesion in diabetic nephropathy. J Diabet Complications 1987;1:2-3. https://doi.org/10.1016/S0891-6632(87)80016-8
  28. Kaneda K, Sakata N, Takebayashi S. Mitochondrial enlargement and basement membrane thickening of renal proximal tubules, possible initiators of micro albuminuria in non-insulindependent diabetics (NIDDM). Acta Pathol Jpn 1992;42:793-9.
  29. Ditscherlein G. Renal histopathology in hypertensive diabetic patients. Hypertension 1985;7:1129-32.
  30. Boeri D, Derchi LE, Martinoli C, Simoni G, Sampietro L, Storace D, et al. Intrarenal arteriosclerosis and impairment of kidney function in NIDDM subjects. Diabetologia 1998;41:121-4. https://doi.org/10.1007/s001250050877
  31. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001;44:1957-72. https://doi.org/10.1007/s001250100000
  32. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925-30. https://doi.org/10.1172/JCI112521
  33. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20. https://doi.org/10.1038/414813a
  34. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615-25. https://doi.org/10.2337/diabetes.54.6.1615
  35. Higgins PJ, Bunn HF. Kinetic analysis of nonenyzmatic glycosylation of hemoglobin. J Biol Chem 1981;256:5204-8.
  36. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: Biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 1994;70:138-51.
  37. Makino H, Shikata K, Kushiro M, Hironaka K, Yamasaki Y, Sugimoto H, et al. Roles of advanced glycation end-products in the progression of diabetic nephropathy. Nephrol Dial Transplant 1996;11 (5 Suppl):76-80. https://doi.org/10.1093/ndt/11.supp5.76
  38. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599-606. https://doi.org/10.1056/NEJM198703053161007
  39. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 2000;Suppl.77:S3-S12.
  40. Passariello N, Sepe J, Marrazzo G, De Cicco A, Peluso A, Pisano MC, et al. Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular fitration rate in IDDM subjects with nephropathy. Diabetes Care 1993;16:789-95. https://doi.org/10.2337/diacare.16.5.789
  41. Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 2005;26:380-92. https://doi.org/10.1210/er.2004-0028
  42. Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M. Glutamine fructose-6-phosphate amidotransferase(GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 2007;40:952-7. https://doi.org/10.1016/j.clinbiochem.2007.05.002
  43. Cooksey RC, Hebert Jr LF, Zhu JH, Wofford P, Garvey WT, McClain DA. Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 1999;140:1151-7. https://doi.org/10.1210/en.140.3.1151
  44. Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2005;289:F645-F59. https://doi.org/10.1152/ajprenal.00398.2004
  45. McRobert EA, Gallicchio M, Jerums G, Cooper ME, Bach LA. The amino-terminal domains of the ezrin, radixin, and moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications. J Biol Chem 2003;278:25783-9. https://doi.org/10.1074/jbc.M210433200
  46. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854
  47. Schiekofer S, Andrassy M, Chen J, Rudofsky G, Schneider J, Wendt T, et al. Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44MAPK, and nuclear factor ${\kappa}$ B in PBMCs. Diabetes 2003;52:621-33. https://doi.org/10.2337/diabetes.52.3.621
  48. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 1994;269:9889-97.
  49. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlondorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 1993;43:853-64. https://doi.org/10.1038/ki.1993.120
  50. Mott JD, Khalifah RG, Nagase H, Shield CF 3rd, Hudson JK, Hudson BG. Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 1997;52:1302-12. https://doi.org/10.1038/ki.1997.455
  51. Throckmorton DC, Brogden AP, Min B, Rasmussen H, Kashgarian M. PDGF and TGF-${\beta}$ mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 1995;48:111-7. https://doi.org/10.1038/ki.1995.274
  52. Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 2003;14(Suppl 3):S254-S8. https://doi.org/10.1097/01.ASN.0000077413.41276.17
  53. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 1991;325:836-42. https://doi.org/10.1056/NEJM199109193251202
  54. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 1991;40:1328-34. https://doi.org/10.2337/diabetes.40.10.1328
  55. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycosylation endproducts induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci USA 1994;91:11704-18. https://doi.org/10.1073/pnas.91.24.11704
  56. Yang CW, Vlassara H, Striker GE, Striker Lj. Administration of AGEs in vivo induces genes implicated in diabetic glomerulosclerosis. Kidney Int 1995;47(49 Suppl):S55-8.
  57. Striker LJ, Striker GE. Administration of AGEs in vivo induces extracellular matrix gene expression. Nephrol Dial Transplant 1996;11(5 Suppl):62-5.
  58. Ha T-S. Researches on the pathophysiology of proteinuria in diabetic nephropathy. Korean J Pediatr 1998;41(Suppl 1):S69-S74.
  59. Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, et al. Predictors for the development of micro albuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 2004;328:1105-9. https://doi.org/10.1136/bmj.38070.450891.FE
  60. Parving H-H, Anderson AR, Smidt UM, Svendsen PA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1983;1:1175-79.
  61. Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003;254:45-66. https://doi.org/10.1046/j.1365-2796.2003.01157.x
  62. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004;34:785-96. https://doi.org/10.1111/j.1365-2362.2004.01429.x
  63. Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy: role of hypertension. Hypertension 2006;48:519-26. https://doi.org/10.1161/01.HYP.0000240331.32352.0c
  64. Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol 2003;23:194-9. https://doi.org/10.1053/anep.2003.50017
  65. Harris RC, Haralson MA, Badr KF. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest 1992;66:548-54.
  66. Cortes P, Zhao X, Riser BL, Narins RG. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney Int 1997;51:57-68. https://doi.org/10.1038/ki.1997.8
  67. Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, et al. Mechanical stretch induces vascular permeability factor in human mesangial cells: Mechanisms of signal transduction. Proc Natl Acad Sci USA 1997;94:12112-6. https://doi.org/10.1073/pnas.94.22.12112
  68. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997;46:2075-81. https://doi.org/10.2337/diabetes.46.12.2075
  69. Petermann AT, Hiromura K, Blonski M, Pippin J, Monkawa T, Durvasula R, et al. Mechanical stress reduces podocyte proliferation in vitro. Kidney Int 2002;61:40-50. https://doi.org/10.1046/j.1523-1755.2002.00102.x
  70. Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hahnel B. A role for podocytes to counteract capillary wall distension. Kidney Int 1994;45:369-76. https://doi.org/10.1038/ki.1994.47
  71. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 2001;12:413-22.
  72. Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGF${\beta}$1 reduce podocyte adhesion through ${\alpha}3{\beta}1$ integrin downregulation. Nephrol Dial Transplant 2009;24:2645-55. https://doi.org/10.1093/ndt/gfp204
  73. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, et al. Renal injury from angiotensin II mediated hypertension. Hypertension 1992;19:464-74. https://doi.org/10.1161/01.HYP.19.5.464
  74. Anderson S. Physiologic actions and molecular expression of the renin-angiotensin system in the diabetic rat. Miner Electrolyte Metab 1998;24:406-11. https://doi.org/10.1159/000057402
  75. Klahr S, Morrissey J. Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998;31:171-6. https://doi.org/10.1053/ajkd.1998.v31.pm9428470
  76. Haugen EN, Croatt AJ, Nath CA. Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro. Kidney Int 2000;58:144-52. https://doi.org/10.1046/j.1523-1755.2000.00150.x
  77. Cooper ME, Jerums G, Gilbert RE. Diabetic vascular complications. Clin Exp Pharmacol Physiol 1997;24:770-5. https://doi.org/10.1111/j.1440-1681.1997.tb02130.x
  78. Cooper ME. Renal protection and ACE inhibition in microalbuminuric type I and type II diabetic patients. J Hypertens 1996;14:S11-4. https://doi.org/10.1097/00004872-199610003-00003
  79. ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and micro albuminuria receive angiotensin-converting enzyme inhibitors- A meta-analysis of individual patient data. Ann Intern Med 2001;134:370-9. https://doi.org/10.7326/0003-4819-134-5-200103060-00009
  80. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861-9. https://doi.org/10.1056/NEJMoa011161
  81. Sarafidis PA, Stafylas PC, Kanaki AI, Lasaridis AN. Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens 2008;21:922-9. https://doi.org/10.1038/ajh.2008.206
  82. Zatz R, Dunn BR, Meyer TW, Brenner B. Prevention of diabetic glomerulapathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986;77:1925-30. https://doi.org/10.1172/JCI112521
  83. Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen UL, Jerums G, et al. Expression of transforming growth factor-${\beta}$1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of angiotensin converting enzyme inhibition. Diabetes 1998;47:414-22. https://doi.org/10.2337/diabetes.47.3.414
  84. Nguyen G, Danser AH. Prorenin and (pro)renin receptor: a review of available data from in vitro studies and experimental models in rodents. Exp Physiol 2008;93:557-63. https://doi.org/10.1113/expphysiol.2007.040030
  85. Danser AH. Novel drugs targeting hypertension: renin inhibitors. J Cardiovasc Pharmacol 2007;50:105-11. https://doi.org/10.1097/FJC.0b013e318070d1d3
  86. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin. J Clin Invest 2004;114:1128-35.
  87. Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, Bryer-Ash M. Increased plasma inactive renin in diabetes mellitus. A marker of micro-vascular complications. N Engl J Med 1985;312:1412-7. https://doi.org/10.1056/NEJM198505303122202
  88. Deinum J, Ronn B, Mathiesen E, Derkx FH, Hop WC, Schalekamp MA. Increase in serum prorenin precedes onset of micro albuminuria in patients with insulin-dependent diabetes mellitus. Diabetologia 1999;42:1006-10. https://doi.org/10.1007/s001250051260
  89. Parving HR, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008;358:2433-46. https://doi.org/10.1056/NEJMoa0708379
  90. Persson F, Rossing P, Schjoedt KJ, Juhl T, Tarnow L, Stehouwer CD, et al. Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int 2008;73:1419-25. https://doi.org/10.1038/ki.2008.68
  91. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart : role of oxidative stress. Am J Pathol 2002;161:1773-81. https://doi.org/10.1016/S0002-9440(10)64454-9
  92. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996;98:1063-8. https://doi.org/10.1172/JCI118867
  93. Fujisawa G, Okada K, Muto S, Fujita N, Itabashi N, Kusano E, et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int 2004;66:1493-1502. https://doi.org/10.1111/j.1523-1755.2004.00913.x
  94. Han SY, Kim CH, Kim HS, Jee YH, Song HK, Lee MH, et al. Spironolactone prevents diabetic nephropathy through an anti -inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol 2006;17:1362-72. https://doi.org/10.1681/ASN.2005111196
  95. Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 2006;70:536-42.
  96. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003;41:64-8. https://doi.org/10.1161/01.HYP.0000044937.95080.E9
  97. Kang YS, Ko GJ, Lee MH, Song HK, Han SY, Han KH, et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrol Dial Transplant 2009;24:73-84. https://doi.org/10.1093/ndt/gfn448
  98. Joffe HV, Kwong RY, Gerhard-Herman MD, Rice C, Feldman K, Adler GK. Beneficial effects of eplerenone versus hydrochlorothiazide on coronary circulatory function in patients with diabetes mellitus. J Clin Endocrinol Metab 2007;92:2552-8. https://doi.org/10.1210/jc.2007-0393
  99. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258:607-14. https://doi.org/10.1126/science.1411571
  100. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998;47: 859-66. https://doi.org/10.2337/diabetes.47.6.859
  101. Koya D, Jirousek MR, Lin Y-W, Ishii H, Kuboki K, King GL. Characterization of protein kinase C ${\beta}$ isoform activation on the gene expression of transforming growth factor-${\beta}$, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997;100:115-26. https://doi.org/10.1172/JCI119503
  102. Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R, et al. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997;46:847-53. https://doi.org/10.2337/diabetes.46.5.847
  103. Ruan X, Arendshort WJ. Role of protein kinase C in angiotensin II-induced renal vasoconstrictin in genetically hypertensive rats. Am J Physiol 1996;270:F945-F52.
  104. Perico N, Benigni A, Gabanelli M, Piccinelli A, Rog M, De Riva C, et al. Atrial natriuretic peptide and prostacyclin synergistically mediate hyperfiltration and hyperperfusion of diabetic rats. Diabetes 1992;41:533-8. https://doi.org/10.2337/diabetes.41.4.533
  105. Sharma K, Danoff TM, DePiero A, Ziyadeh FN. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: possible mediatio via protein kinase C. Biochem Biophys Res Commun 1995;207:80-8. https://doi.org/10.1006/bbrc.1995.1156
  106. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC ${\beta}$ inhibitor. Science 1996;272:728-31. https://doi.org/10.1126/science.272.5262.728
  107. Babazono T, Kapor-Drezgic J, Dlugosz JA, Whiteside C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes 1998;47:668-76. https://doi.org/10.2337/diabetes.47.4.668
  108. Del Prete D, Anglani F, Ceol M, D'Angelo A, Forino M, Vianello D, et al. Molecular biology of diabetic gloomerulosclerosis. Nephrol Dial Transplant 1998;13[Suppl 8]:20-5.
  109. White MF. The insulin signalling system and the IRS proteins. Diabetologia 1997;40:S2-S17. https://doi.org/10.1007/s001250051387
  110. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998;273:5315-22. https://doi.org/10.1074/jbc.273.9.5315
  111. Vanhasebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000;346:561-76. https://doi.org/10.1042/0264-6021:3460561
  112. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231-41. https://doi.org/10.1016/S0092-8674(00)80405-5
  113. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, et al. Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad sci USA 1996;93:7639-43. https://doi.org/10.1073/pnas.93.15.7639
  114. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996;271:31372-8. https://doi.org/10.1074/jbc.271.49.31372
  115. Bhandari T, Feliers D, Senthil D, Stewart JL, Gingras AC, Abboud HE, et al. Insulin regulation of protein translation repressor 4E-BP1, an elF4E binding protein, in renal epithelial cells involves diverse signaling pathways. Kidney Int 2001;59:866-75. https://doi.org/10.1046/j.1523-1755.2001.059003866.x
  116. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-69.
  117. Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JS. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 2002;143:2975-85. https://doi.org/10.1210/en.143.8.2975
  118. Ishida T, Haneda M, Maeda S, Koya D, Kikkawa R. Stretch-induced overexpression of fibronectin in mesangial cells is mediated by the activation of mitogen-activated protein kinase. Diabetes 1999;48:595-602. https://doi.org/10.2337/diabetes.48.3.595
  119. Nose A, Mori Y, Uchiyama-Tanaka Y, Kishimoto N, Maruyama K, Matsubara H, et al. Regulation of glucose transporter (GLUT1) gene expression by angiotensin II in mesangial cells: Involvement of HB-EGF and EGF receptor transactivation. Hypertens Res 2003;26:67-73. https://doi.org/10.1291/hypres.26.67
  120. Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, et al. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney Int 2004;66:1107-14. https://doi.org/10.1111/j.1523-1755.2004.00798.x
  121. Sakai N, Wada T, Furuichi K, Iwata Y, Yoshimoto K, Kitagawa K, et al. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 2005;45:54-65. https://doi.org/10.1053/j.ajkd.2004.08.039
  122. Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Semin Nephrol 1997;17:80-92.
  123. Peters H, Noble NA, Border WA. Transforming growth factor-beta in human glomerular injury. Curr Opin Nephrol Hypertens 1997;6:389-93. https://doi.org/10.1097/00041552-199707000-00014
  124. Fumo P, Kuncio GS, Ziyadeh FN. PKC and high glucose stimulate collagen alpha 1 (IV) transcriptional activity in a reporter mesangial cell line. Am J Physiol 1994;267:632-8.
  125. Nakamura T, Fukui M, Ebihara I, Osada S, Nagaoka I, Tomino Y, et al. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 1993;42:450-6. https://doi.org/10.2337/diabetes.42.3.450
  126. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF ${\beta}$ antibody attenuates kidney hypertrophy and the enhanced extracelluar matrix gene expression in STZ-induced diabetic mice. Diabetes 1996;45:522-30. https://doi.org/10.2337/diabetes.45.4.522
  127. Ferrara N, Gerber, HP, LeCouter, J. The biology of VEGF and its receptors. Nat. Med 2003;9:669-76. https://doi.org/10.1038/nm0603-669
  128. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 2004;65:2003-17. https://doi.org/10.1111/j.1523-1755.2004.00621.x
  129. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999;48:2229-39. https://doi.org/10.2337/diabetes.48.11.2229
  130. Lee EY, Chung CH, Kim JH, Joung HJ, Hong SY. Antioxidants ameliorate the expression of vascular endothelial growth factor mediated by protein kinase C in diabetic podocytes. Nephrol Dial Transplant 2006;21:1496-1503. https://doi.org/10.1093/ndt/gfl022
  131. Shulman K, Rosen S, Tognazzi K, Manseau EJ, Brown LF. Expression of vascular permeability factor (VPF/VEGF) is altered in many glomerular diseases. J Am Soc Nephrol 1996;7:661-6.
  132. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001;12:993-1000.
  133. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 2002;51:3090-4. https://doi.org/10.2337/diabetes.51.10.3090
  134. Schrijvers BF, Flyvbjerg A, Tilton RG, Lameire NH, De Vriese AS. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol Dial Transplant 2006;21:324-9. https://doi.org/10.1093/ndt/gfi217
  135. Lee EY, Shim MS, Kim MJ, Hong SY, Shin YG, Chung CH. Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes. Exp Mol Med 2004;36:65-70. https://doi.org/10.1038/emm.2004.9
  136. Tsuchida K, Makita Z, Yamagishi S, Atsumi T, Miyoshi H, Obara S, et al. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195. Diabetologia 1999;42:579-88. https://doi.org/10.1007/s001250051198
  137. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008;294:F697-701. https://doi.org/10.1152/ajprenal.00016.2008
  138. Fornoni A, Ijaz A, Tejada T, Lenz O. Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 2008;4:10-7. https://doi.org/10.2174/157339908783502361
  139. Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008;19:433-42. https://doi.org/10.1681/ASN.2007091048
  140. Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ & Tesch GH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006;69:73-80. https://doi.org/10.1038/sj.ki.5000014
  141. Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes, and in vitro in human mesangial cells. Diabetologia 2008;51:198-207. https://doi.org/10.1007/s00125-007-0837-3
  142. Gu L, Ni Z, Qian J, Tomino Y. Pravastatin inhibits carboxymethyllysine-induced monocyte chemoattractant protein 1 expression in podocytes via prevention of signaling events. Nephron Exp Nephrol 2007;106:e1-10. https://doi.org/10.1159/000100498
  143. Lee EY, Chung CH, Khoury CC, Yeo TK, Pyagay PE, Wang A, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol 2009;297:F85-94. https://doi.org/10.1152/ajprenal.90642.2008
  144. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007;27:130-43. https://doi.org/10.1016/j.semnephrol.2007.01.006
  145. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 2005;10 Suppl:S7-S10. https://doi.org/10.1111/j.1440-1797.2005.00448.x
  146. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225-33. https://doi.org/10.2337/diabetes.55.01.06.db05-0894
  147. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57:1446-54. https://doi.org/10.2337/db08-0057
  148. Ha T-S, Kim H-S. Effects of advanced glycation endproducts on rat glomerular epithelial cells: Roles of reactive oxygen species. Korean J Nephrol 2003;22:285-93.

피인용 문헌

  1. 사춘기에 말기 신질환으로 조기 진행한 소아 제1형 당뇨병성 신병증 1례 vol.13, pp.2, 2009, https://doi.org/10.3339/jkspn.2009.13.2.242