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Abstract

Classification of subjects with unknown distribution in small sample size setup may involve order-restricted
constraints in multivariate parameter setups. Those problems makes optimality of conventional likelihood
ratio based statistical inferences not feasible. Fortunately, Roy (1953) introduced union-intersection princi-
ple(UIP) which provides an alternative avenue. Redescending M-estimator along with that principle yields
a considerably appropriate robust testing procedure. Furthermore, conditionally distribution-free test based
upon exact permutation theory is used to generate p-values, even in small sample. Applications of this
method are illustrated in simulated data and read data example (Lobenhofer et al., 2002)
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1. Introduction

To classify subjects across distinct groups(or experimental conditions) with unknown distribution
in small sample has received much attention in the literature. On top of that, it may have complex
structures which are marred by inequality, order, stochastic ordering, functional and shape con-
straints or others. Such a model is abound in interdisciplinary fields, in particular in the field of
genomics and the contemplated bioinformatics area. For example, microarray data has a lot of stan-
dardization and normalization with small sample size so that conventional simple models, such as
ANOVA and MANOVA models, may hardly be tenable. The likelihood, sufficiency, and invariance
principles are very crucial in finite sample methodology. In complex statistical models involving
some such constraints, those properties are not often satisfied. Furthermore, even in asymptotics,
lack of some regularity conditions often encounter roadblocks for optimal inferences. As such, it
should be noted that the existing literature did not seem to work well. One possible remedy is to
utilize the union-intersection principle, which was developed by Roy (1953) as a heuristic method
of test construction. It was shown that using the principle accompanies computational advantages
and increased adaptability, and greater adaptability to complex nonstandard models. On the other
hand, we attempt to handle situations in which a distribution is unknown(or nonnormal) and sam-
ple size is very small. In respect to unknown distribution, a robust procedure should be used against
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departures from underlying assumptions usually caused by outliers. It should have good perfor-
mance under the underlying assumptions and the performance gets worse as the situation departs
from the distributional assumptions. In order to test order-restricted inference, a formulation of
a linear regression model is appraised by utilizing robust regression estimators. in the next sec-
tion. Transition from normal theory to nonparametric statistics is shown there. There are various
types of robust estimators. M-estimator(maximum likelihood type estimator), L-estimator(linear
combinations of order statistics) and R-estimator(estimator based on rank transformation) (Huber,
1981); RM estimator(repeated median) (Siegel, 1982) and LMS estimator(estimator using the least
median of squares) (Rousseeuw and Yohai, 1984) have been paid attentions to. It was known that
M-estimators are most robust, even in finite sample. Interestingly, among all, redescending M-
estimators acheive both high efficiency and robustness properties whereas the Huber M estimator
entails loss of efficiency at the cost of robustness. However, there is a computational problem in
calculating the redescending M-estimators in a wide variety of linear models including regression,
since it is not easy to solve an equation for M-estimator. Using S-estimator as an initial value may
help to get solutions. For a comprehensive review of them, please see references (Maronna et al.,
2006; Huber, 1973; Andrews, 1974) where other pertinent references have been extensively cited.

In relation to small sample size, we may not use asymptotic distributional theory and then find an
alternative course for small sample size perspective. We may apply permutation theory, which gives
us (conditionally) distribution-free tests without any parametric inferences or specific distributional
assumptions.

The paper is organized as follows. Section 2 shows us the representation of model of our interest
in terms of a linear regression model. In Section 3, we introduce redescending M-estimator and
discuss asymptotic properties. Section 4 shows an explicit representation for proposed test statistics.
Performance of the proposed statistics was compared with that of others in simulation studies and
real data study (Lobenhofer et al., 2002) in Section 5. The last section summarizes our result.

2. A Robust Linear Model

In the context of testing order-restricted inference, we may model the data using a linear regression
model. Consider the linear model Y = X3 + E, where Y = (Y3,...,Y,,) is the vector of gene
expression levels across G groups and The (known)Design matrix of the n x G matrix

1000 0
11 00

10100

1000... 1
The unknown parameter of the G x 1 matrix
,3 = (/‘L17627637 s 76G))

where p1 denotes the average response in the first group and d; refers to the difference between p1
and the average response in the j-th group, j = 2,...,G. The vector of independent and identically
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distributed(i.i.d.) errors with unknown distribution F of the n X 1 matrix
€= (61,62,63, N ,en).

Without loss of generality, we focus on the increasing pattern of means across groups in the paper.
Note that the error distribution is unknown. Thus, robust method is more appropriate than other
test statistics relying on classical normal theory. Our hypotheses are represented as

Hy:6=03=---=8g uvs. H1:52§63-“6G(1).

3. Robust Estimators and Related Asymptotic Properties

"This section presents proposed redescending M-estimator and the limiting distribution of the estima-
tor. Redescending M-estimators are 1-type M-estimators, in which v functions are non-decreasing
near the origin, but decreasing toward 0 (redescend smoothly to zero), so that they usually satisfy
¥(x) = 0 for all x with |z| > r. Due to those properties of ¢ functions, they are very efficient, have
a high breakdown point, and do not suffer from a masking effect, unlike other robust statistics. The
fact that they reject gross outliers, and do not completely ignore moderately large outliers leads to
high efficiency, whereas the Huber estimator for several symmetric, wider tailed distributions con-
siders them as still moderate. In fact, the redescending M estimators are more efficient in contrast
with the Huber estimator for the Cauchy distribution. We skip theoretical review of the estimator
in the section. Let ¥ be a bi-square function, which satisfies crucial assumptions necessary for
asymptotic normality: (1) ¥ is bounded and increases from —1 to 1 and (2) ¥" is continuous. Let
0 be (B3,0). Instead of estimating B with scale parameter ¢ fixed, Huber and Dutter (1974) and
Huber (1977) introduced more elegant methods so that 3 and a scale o are estimated at the same

time by minimizing
S <__-’ﬁ 28 ot Buo (3.1)

where B, is a suitably chosen sequence of constants with B = lim B,. An estimating equation for
redescending M-estimator is given by

>u (%—% x=0, > x (y—_ax—§> = B, (3.2)

where ¥ = p’ and x(t) = fot z0¥(z). Deriving asymptotic normality relies heavily on Silvapullé
(1985). For more in depth, please refer to Silvapullé (1985). Now, the matrix representation of
the regression equation is given by Y = al + Xd + €. Under this setup, we may derive asymptotic
normality of test statistics.

n% ((&1 37&) - (a’ 670.)) - N(07 C)7 (33)
where
h 0 ha
C=0"| 0 nhe(X’X)"* 0 |,
ha 0 hs

ha = (ab — c2)"2(b*u — 2bcw + c*v), ha = (ufa?), hs = (ab — ¢*)7?*(a®v — 2acw + c*u), ha =
(ab — ¢®)~*(abw — beu — acv + c*w), a = E(¥'(n)), b = E(n*¥'(n)), ¢ = E(¥'(n)),v = Var(¥(n)),
v = Var(x(n)) and w = Cov(¥(n), x(n)) with n = (¢/o").
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4. Order-Restricted Inference

For testing the null hypothesis, it may be intended to consider alternatives that the vector 3 belongs
to the nonnegative orthant space RT(G-1_ In the univariate case, an optimal UMP test exists for
such one-sided alternative. However, in such a multivariate case, UMP tests do not exist. For
example, the Hotelling 7% will result in a larger set of confidence interval and will entail some loss
of efficiency. It’s therefore interesting to appraise statistical inference under such restricted setups.
UIP (Union-Intersection Principle) formulation of Roy (1953) could be well tailored for statistical
inference under the one-sided multivariate alternative hypothesis. Let 3 = (6, 8) the M-estimator.
In conjuction to (1) in Section 2, we use UIP to formulate a robust M-test for

Hy:AB=0 vs. H,:AB >0,

where

00 0..-110
Let G={1,...,G—1}, and for every a: 0 C a C G, let a’ be its complement and |a] its cardinality.
For each a: @ C a C G, partition Z and V as

" Za Vaa Vaa’
= V =
z (Za/ ) ’ (Va’a Vo )

-1
Za:a’ =2, - Vaa’Va/aIZa’a
-1
Vaa:a’ =V, — Vaa’Va/a/Vu/a-

and write

We have the result of the limiting distribution derived in the previous section. In passing, since
nt/ %(M,, — 8) to a G-variate normal law, for n very large, we get

1
(nV)2(Z-8) B No-1(0,1). (4.1)

Under (4.2), we formulate test statistics T given by
Socaco] (Zaw >0,V Za < 0) (02,0 V1t Zh0) . (4.2)

Remember that we handle situations when sample size n is too small. As such, asymptotic normality
does not hold. For this reason, the permutation distribution theory is fully exploited for small sample
size setup. Under the null hypothesis of homogeneity, the joint distribution of all n observations
remains invariant under any permutation, leading to manageable testing procedures. It should be
noted, however, that the behavior of T' under alternatives depends on the stochastic ordering of 3.
This statistics should be not exact-distribution free. In a very nonparametric set up, conditionally
distribution-free tests can be constructed in the following manner. We reject the null hypothesis
for large positive values, where T is a test statistic and ¢ is an observed test statistics. Under the
alternative, Yy — Y;, 1 < i < ¢ < n has a distribution tilted to the right so that E(T|Hy) > 0.
This motivates us to use tests based on T using the right hand side critical region. The distribution
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Table 5.1. Simulation study

means of 6 groups proposed ANOVA JT
(1,2, 3,4, 5, 6) 2.5e—11 41610 1.6e07
(1,3,5,7,9, 11) 3.1e—15 2.5e—14 4.9e—09
(1,4, 7, 11, 14, 17) 1.4e—20 7.1e—19 1.4e—09
(1, 5, 9, 13, 17, 21) 1.3e—24 1.4e—22 1.4e—09
(1, 6, 11, 16, 21, 26) 6.le—25 7.3e—23 1.4e—09

of T under Hy is generated by the n!/(niln2! - ng!) equally likely permutations of observations
Y;,i =1,...,n. Henceforth, proposed method of p-value can be computed based on T. Our testing
procedure is given by

P = Px(T > t|Hy), (4.3)

where t is an observed test statistics.

5. Simulation Studies

‘We now carry out simulation studies to illustrate the performance of proposed method and compare
with two existing procedures: ANOVA and Jonckheere-Terpstra trend test(JT) which is one of the
most common nonparametric test for ordered differences among classes. JT tests the null hypothesis
that the distribution of the response variable does not differ among classes. One of the drawbacks
in that is that this test works well at large in large sample. The original data consists of 6 groups
having 24 observations. FEach group has 4 random normal variables with different mean from
other groups. We assign population mean to each group in increasing order. As the difference in
the means between a pair of groups increases by 1, we computed p-values based on each method
and illustrate them in the following table. We may simulate the permuation distribution of the
test statistics. When computing p-value for proposed method, the data was permuted with about
241/(41)° iterations.

Table 5.1 reports that three procedures all have relatively small p-values. Proposed method is
more sensitive to increase in the difference of means between groups. On the other hand, ANOVA
method has less conservative test statistics {or smaller p-value) than what we expected, which does
not mean that the test is justified theoretically, for example, in terms of likelihood based inferences.
ANOVA method includes more broad definition of alternative hypothesis than other procedures. As
difference increases, p-value for proposed method decreases accordingly, but Jonckheere-Terpstra
trend test{JT) does not reflect this aspect. These results are expected in our theory.

6. A Real Data Example

We consider a genomic model in microarray data analysis as an illustration. The crux of data
analysis is to identify differentially expressed genes among a huge number of of genes, tested si-
multaneously, across experimental conditions. Let us introduce data structure in Lobehofer et al
(2002). Mitogenesis in breast cancer cells may be stimulated by the steroid hormone estrogen. The
cDNA microarray gene expression levels of a hormone-responsive breast cancer epithelial cell line
with a mitogenic dose of estrogen without other confounding growth factors in serum were exam-
ined. Gene expression changes were measured at 6 time points 1, 4, 12, 24, 36 and 48 hours after
estrogen stimulation. The expression levels of DNA replication fork genes stimulated by estrogen,
without growth factors in serum, shows that the steroid hormone estrogen plays a important role
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Table 6.1. Real data

proposed ANOVA JT
0.001 0.002 0.005

of generating Mitogenesis. The data consists of 6 groups with 8 observations per group. Gene
expression levels are log-transformed. For our purpose, our dataset contains 4 observation per each
time point. Table 6.1 presents p-values for three methods used in previous section.

It was found that we may reject the null hypothesis for that gene, based on three procedures. Note
that the p-value for proposed method seems to be smaller than others.

7. Concluding Remarks

In this paper, we propose robust procedure for testing order-restricted inference, which works well
even for finite sample. Though asymptotic normality did not hold for small sample size, proposed
method with use of permutation theory has better performance than other trend test procedure like
Jonckheere-Terpstra test. In other words, proposed method has smaller p-values which demonstrates
that the method is more sensitive to order-restricted inference.
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