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Abstract

The nonparametric bivariate two-sample test of Bennett (1967) is extended to the multivariate k sample
test. This test has been easily modified for a monotone trend among k samples. Often in applications it
is important to consider a set of multivariate response variables simultaneously, rather than individually,
and also important to consider testing k samples altogether. Different approaches of estimating the null
covariance matrices of the test statistics resulted in the same limiting form. The multivariate k sample test
is applied to the non-normal data of a randomized trial conducted for a period of four weeks in mental
hospitals. The purpose of the trial is to compare the efficacy of three different interventions for a relief
of the frequently occurring problems of constipation, caused as a side effect of antipsychotic drugs during
hospitalization. The bowel movement status of patient for a week is summarized into a single severity score,
and severity scores of four weeks comprise a four-dimensional multivariate variable. It is desirable with this

trial data to consider a multivariate testing among k samples.

Keywords: U statistics, multivariate test, nonparametric test, severity scores.

1. Introduction

A daily habit is not only natural but necessary, and including physicians many persons regard
a normal bowel habit as being at least one bowel movement per day (Elliot et al, 1983). How-
ever, patients receiving drugs such as neurotoxic chemotherapeutic agents, narcotic analgesics,
antidepressants, tranquilizers, and muscle relaxants have often faced with a significant problem of
constipation. With no exception, schizophrenic inpatients who receive antipsychotic drugs have
difficult or infrequent defecation. A randomized trial is planned for the evaluation of efﬁcacy of
nursing interventions of four weeks long for relieving these frequent adverse effects (Yang, 1992):
(1) Patients were randomly divided into three groups among which one group is a control group;
(2) patients in the first treatment group had fluid and 15 minutes daily exercises and patients in the
second treatment group had dietary fiber supplements additionally, and finally control patients had
neither muscle exercises nor dietary fiber supplements; (3) each patient’s condition is monitored
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daily for four weeks, after the first two weeks of patient selection period. Therefore, in respect of
the characteristic of these interventions, the effectiveness of intervention could be tested with an
alternative that the two interventions are indeed more efficacious than no intervention at all. The
outcome of intervention efficacy can be measured by bowel movements in each day, and the failure
of defecation in each day is represented by a run of one, indicating no bowel movements that day. In
order to test the improvements of bowel movements during the trial period, scores were computed
for each patient based on runs of no bowel movements every week, and thus a multivariate scores of
four weeks are obtained for three intervention groups, in which one group is control. These scores
appear to be definitely non-normal.

We propose a nonparametric multivariate test for difference among k samples. The multivariate
scores of three intervention groups are tested for a general alternative, but can simply be modified
to test for a monotone trend. As related works, Dietz and Kileen (1981) proposed a test for a
time trend based on Kendall’s 7 statistic by incorporating changes in each continuous variable over
the course of the experiment. However, this multivariate test of Dietz and Kileen (1981) is a case
of a single sample. Earlier, Bennett (1967) proposed a nonparametric bivariate two-sample test.
Our nonparametric statistic corresponds to an extension of Bennett’s (1967) bivariate two-sample
test to a multivariate k sample case for a general alternative. Related work is found in Dietz
(1989) who proposed multivariate Jonckheere’s (1954) trend test, not a multivariate test under a
general alternative. Other nonparametric approaches to multivariate tests, that are related to the
generalized median of Oja (1983), have been proposed based on multivariate signs and ranks in the
sphere (Randles, 2000; Oja and Randles, 2004). In the multivariate test proposed in this paper,
the covariance matrix needs to be derived when there are more than two treatment groups under
consideration, and the covariance matrix is presented in Theorem 2.1 in Section 2. A monotone
trend alternative among k samples can also be conceived and its test statistic is presented in Section
4.

2. Multivariate k-Sample Test

Let X;; =(xi;1, Tij2, .-, Tijp)” be ap x 1 vector of observations on p variables for the i*" subject
in treatment j, j = 1,...,k, 2 =1,...,n;. Assume that Xj;’s are independent with continuous dis-
tribution functions F'(x) and the marginal distribution functions, F;l) (z),..., Fj(p) (£),7=1,... k.
We consider the null hypothesis

Ho : F1(X) = FQ(X) == Fk(x)
and the general alternative hypothesis

H, : Fj(x) # Fy(x), for at least two treatments j and j', for 5,5’ =1,... k.

Nonparametric test statistics mainly depend on the ranks of the data and in the multivariate
test N = E?:l n; observations of the k samples are arranged in an non-decreasing order in each
coordinate. In a randomized clinical trial data that will be analyzed in this paper, k equals to 3,
indicating the groups of control, experimental 1 and experimental 2, and p equals to 4 indicating four
weeks of interventions; k samples are arranged from control, first treatment and second treatment
groups. Low values indicate intervention efficacy as opposed to the general case that higher values
are considered to indicate good outcomes from interventions, which is reflected in the definition of
¢(a, b) below. For a test of the null hypothesis, we calculate pk(k — 1)/2 Mann-Whitney U statistic
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(Mann and Whitney, 1947) (called U statistic afterwards), Uyy = (Up, UZ,, ..., UE,) given by

Ny My

Udo =3 ¢(ing, Tirng), 9=1,...,p, 1<u<v<k, (2.1)

i=1 /=1
where

1, ifa>b,

$la,b) = { 0, otherwise.

First we describe the bivariate two-sample testing situation considered in Bennett (1967). For the
variable g, UZ, is the number of times that the observations of treatment u precedes the observations
of treatment v. The mean and variance of UZ, under Hy are ny,n,/2 and nun,(n. + n, + 1)/12,
respectively (Hollander and Wolfe, 1999). Bennett (1967) calculated the covariance of two correlated
U statistics, U2, and UZ, of variable 1 and 2 that are observed on the same subject. It is based
on conditional probabilities, which is equivalent to the concordance probabilities of Kendall (1962).
The covariance is

1 1 1
c (Uulm Ugv) = inunvﬂl + Enunv(nu + 1y — 2)71'2 - Znunv(nu + ny — 1), (22)
where (yi1,yi2), t =1, ..., nu + 7y Is a bivariate random vector when each component represents

the combined sequence of (n. + n,) observations from two independent variates (Z.1,Ziv1) and
(Tiuz, Tiv2), and
w1 = {yiz <yira|yir <yirn}, (2.3)
m2 = {yi2 <gir2 |y <win}- (2.4)

The correlation coefficient estimate from (2.2) is then defined

3t 6(n + 1y — 2) 1
_ _1 2.5
" (nu + Ny + 1) + (nu + Ny + 1) <p2 2) ( )

in terms of the corresponding estimate, ¢ of Kendall’s 7-coefficient (r = 2w, — 1) and the estimate,
p2 of (2.4).

Now we consider the k sample testing situation. When we take into account of the covariance of
U-statistics, specifically between UZ,, and Uﬁ; for any two variables g and g’ among k variables, the
concordance probabilities of Kendall (1962) can be applied again, because the calculation of these
probabilities is based on the marginal distribution function F(-"’g,)(ac,y), where z and y indicate
variables for ¢ and g’-coordinates respectively, and the covariance depends on the common assumed
distribution F. under Hy;. We define the concordance probabilities of two types from p variables
over k treatments as follow: For 1 < g # ¢ <p,

7 = {wigr < Wiy jwig < wirg}, (2.6)
ng/ = {wig/ < Wi g |wig < wi/g}) (2'7)
where (wig,w;g), 2 =1,...,N = (Zf___l n;) represents N observations from the k combined se-
quence of the variates (ziig,. .., Zikg) and (xi1g7,...,Tikg’). The covariance between UJ, and US;

is similar to the covariance formula of {2.2) and is given by

’ 1 ’ / 1
Cov (U;’jv, USU> = inunvﬂ'fg + %nunv(nu +n, — 2)7d¥ — Znunv(nu + 7y — 1). (2.8)
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Theorem 2.1. Under Hy, the covariances between U2, and Usgt, forany1<g,¢' <pandu,v,s,te
{1,...,k} are

(UL, U%) =0, for all distinct u,v,s,t € {1,...,k}, (2.9)
Cou(US,,U%,) = ”";’5’“, fori<u<wt<k v#t, (2.10)
Cow(US,,U%,) = % fori<s<u<w<k, (2.11)
Cou(UE,,US,) = Thulwlit forl<u<v<t<k, (2.12)

12
Cov(UZ,,U3,) = n";’;’ns, foril<u,s<v<k, u#s, (2.13)
Cov(Ugv,Ufj;) = n_“zvﬂ (271'39, - 1) , forl<u<uv,t<k v#t g#4g, (2.14)
Coo(UL,, US,) = =222 (2n8 —1), forl<s<u<v<k g#d, (2.15)
Cov(Uﬁv,Uf,’tI) = w (277391 - 1) , fori<u<uv<it<k g#4g, (2.16)
Cov(Ufo,U;";) = —TE“T:’—HS (27rgg/ - 1) , forl<us<v<k u#s, g#¢, (2.17)

where 7rgg is from (2.7).

Theorem 2.1 is proved in the Appendix.

To estimate the concordance probabilities, 799 and 759, arrange {(wig, wiy),4 = 1,..., N} in
1 g gy Wig

ascendlng order, first for g coordinate and secondly for g’ coordinate. Then the unbiased estimates

g’

of 7?" and 79" are
N-1 N
p?? _N(N—l Z_: > Slwig, wirg) plwigr, wirgs), (2.18)
) jv N N
pgg' m Z _z: g P(wig, wirg) lwigr, wirrgr). (2.19)
V>4

From Theorem 2.1 and the concordance probability estimates, (2.18) and (2.19), an estimate of
correlation coefficient between Ug, and U?, is

31,7 (Zpgg, - 1)
Vrene(nu + e + 1) (nw + 1 + 1)

99
uv, ut =

r

Let U= (Uiz,- -, Ufy - Ul—yir - -+ Ul 1)) PE(k—1)/2 x 1 vector and u be the standardized
U, whose element is given by (UZ, — 1/2nun,)/{1/12n.n,(n + no 4+ 1)}1/2,
The covariance matrix ¥ of u is defined by

1 T%%lg 'ri;(k_l)k

21 2p
T12,12 1 cor T (k=K

pl p2
Tk—-1)k,12 T(k=1)k,12 *°
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By Theorem 7.1 of Hoeffding (1948), the joint distribution of the standardized U statistic, u, is
asymptotically mutilvariate normal distribution, as n; for all j increase to indefinity. Under Hp,
u? Y 'u is asymptotically x2(pk(k —1)/2), if X is of full rank. If & is of rank ¢ < pk(k —1)/2, then
u?T"u, where £~ is any generalized inverse of 5, is asymptotically x*(q).

3. Ties

Ties were not considered in Section 2 of the multivariate k-sample test, and here we consider the
test statistic with ties. It is related to the work of Dietz (1989), who derived the coordinate-wise
Jonckheere test statistic, which is equivalent to a sum of U statistics. If there are ties among 54,
the ¢ function in the U statistic of (2.1) is replaced with ¢* function defined by

I 1, ifa>b,
#(ab) =4 3, ifa=b
0, otherwise.

Under Hy, although ties in the z;;,’s do not affect the mean of US,,, its variance is reduced to

h
Var* (US,) = {"—“’%ﬁ—” - % {th(tf - 1)(2t + 5)}
=1

N (Mw — 1)(Nw — 2) + iy (ny — 1)(ny — 2 h 9reg v
+ 2 )(36n(ni)(n(_ 2 X ){Zti(ti—l)(ti—z)}

i=1

+ Mo (N —8;2;-_12;)@“ - 1) {Zti’(tf _ 1)} :| , (3.1)

where nn = ny, + ny, h denotes the number of tied groups, and ¢] is the size of the it" tied group for
coordinate g (Hollander and Wolfe, 1999).

For the covariances, we begin by defining the centered version of the statistic UJ, forg=1,...,p, 1 <
u<v<k
Ny N
Tgu = Ug‘u e
2
Moy Ty

=33 6 (g, Toag) — I

1=x1 §/=1

_ i‘: i SIgN{Tiug — Tirug)
2 bl

i=14'=1
where
!{ 1 ifa > 0,
sign{a) = 1 0, ifa=0,
{ -1, ifa<.

Regarding the covariance between T, and Ts’;/ forany 1 < u,v,s,t <kand1<g#g <p, wecan
extract them from the conditional covariance of coordinate-wise Jonckheere statistics proposed by
Dietz (1989) as follow:

Ty Ty

B (ne +ny —2)(N + 1)
T 4(N -2)

Cov(T¥,, TE)) | = )b + . rar |
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N+1
TS,,TS,) = el -7 < <
Cov(T2,,T%,) = 4(N ) 5 T9s’ = Tog’ forl<u<wv, t<k, v#£t,
’ —Nnunyns (N +1
Cov(TE,,TS,) = N =9 < 3 rggz——ng> forl<s<u<wv<k,
uMy N+1
COV( uv vt): nnnt( ;- Tgg’ —ng) fOI'lS’U,<’U<‘L'Sk)7
g o'y TuNyNs N+1 R < < »
Cov(TZ,,T5,) = 4(N o) 3 Tegr |, forl<u, s<v<k, u#s, (3.2)
where 7,4 = ZZf\Li/ sign [(wir g — wig)(Wirgr — Wigr)] /N(N — 1) is a point estimate of Kendall’s 7
and rgp = 3 El o g0 Sign [(wirg — wig (w,:g/ —wyrgr)] /(N® — N) is an estimate of Spearman’s rho,

Pgg and {(wlg,w,g }} is the arranged vectors used in Section 2. The covariances in (3.2) do not
change even when there are ties because ¢*(a) = 0 for a = 0. However, the covariances in the same
coordinate are already derived in (2.10)~(2.13), that are not provided by Dietz (1989).

Using Theorem 3.6.9 of Randles and Wolfe (1979), the joint limiting distribution of this statistic,
Y, = VNTS,/nun, is pk(k — 1)/2 variate normal with mean 0 and covariance matrix induced
from (3.2) and (2.10)~(2.13). Under Hp, €Y, has limiting variance 1/(12X,) + 1/(12)\,), where
Aj = thﬁoo(N/nJ) 0<A<1,j=1,...,k (Dietz, 1989). The limiting null covariance between

Q¢ and Qu s for 1< g, g’ <k is given by
Cov(Qﬁv,Qil,v,) =0, if u,u’,v,v’ are different,
:ﬁ, ifu=u,v#v andg=g¢g,
z—ﬁ, fu=v,v#v and g =g,
=—ﬁ, fv=u,u#7v and g =g,
:ﬁ, ifv=1v,u#u and g =g,
= Pag’ <1—12)\u—|—1—12)\v), ifu=v,v=2 and g # ¢,
=1p2g)g\;, ifu=v,v#v and g # ¢/,
—fzg)g\;, ifu=v,v#4 and g # ¢/,
—{)29)9\;, fv=u,u#v and g#yg,
= 1'0—5/%/;, ifv=v,u#u and g # ¢, (3.3)

where pgg is Spearman’s rho. The limiting null covariance of vV NUY, /n.n., derived based on the
covariance given in Theorem 2.1, has exactly the same form to the one given here.

4. Trend Test with Coordinate-wise Jonckheere Statistics

In the multivariate k-sample test of Section 2, we can generate the trend statistic using the
coordinate-wise Jonckheere (1954) statistic as in Dietz (1954). In other words, the Jonckheere
(1954) trend statistics based on the geometric severity scores of three groups are computed in each
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week and are summarized into a single statistic. The decreasing trend alternative hypothesis among
g groups is

H,:Fl{z) > FJ(z) > -2 Ff(z), forallzand g=1,...,p, (4.1)
with at least one strict inequality for at least one g. A test against increasing trend alternative can
be considered by reversing the directions of inequalities in (4.1), that is, H, : F{(z) < Fi(z) <
e < F,f (a:)

For coordinate-wise Jonckheere (1954) statistics, we define

Jg = Z U, g=1,...,p, whereU?, is from (2.1).

u<v

Under Ho, J, has mean ), _, nun.,/2 and variance V(J,) = [N?(2N +3) — 2?21 n2(2n; + 3)]/72.
The covariance between Jy and Jy/ is

Cllg Jy) =Y (@%—T& + %(nu + 1 — 2) (2pgg' - 1) + Y f‘“—’;ﬂ (2pgg' - 1)) , (4.2)

ulv ult<v

where 7.,/ is the estimate of Kendall’s tau (= 2ng' —1) and pgy' is from (2.19).

Standardized p x 1 vector statistics of {Jy}, J has covariance matrix ¥, where £, has diago-
nal and off-diagonal elements one and C(Jy, J,)/+/V (Jg)V(Jy), respectively. By a large-sample
approximation, under Ho, JTE,J has x*(p) distribution, as min(ni,...,ns) tends to infinity.

5. Application
5.1. Geometric severity scores derived from runs

In order to depict the degree of seriousness of daily defecation difficulty, we devised geometric
scores based on daily recordings of no bowel movements. Adverse effects of psychotic drugs among
schizophrenic inpatients are getting serious as hospitalized days are increasing and naturally the
number and lengths of runs of no bowel movement days are increasing without any interventions. In
order to quantify the large number of runs and longer lengths of runs, the following scoring method
is proposed. First of all, score 0 is assigned if more than one bowel movement occurs each day. One
assigns a score 1 from the point of no bowel movement for two consecutive days, and a higher score
of 2172 is assigned, if there was no bowel movements for consecutive ! days. We call this a geometric
severity score, which increases geometrically, in a much faster rate than an arithmetic one.

5.2. Multivariate analysis

As an example, when a bowel movement for 10 days is recorded as SFFSFFFFSF(S: success and F:
failure) for a patient, there are three runs of failure (i.e., no bowel movement) are recorded with the
corresponding scores 1, 4 and 0. Thus, the total score is 5(= 1 +4+0). For another example of two
sets of recordings of SFSSFFSFFF and SSSSFFFFFF, which demonstrate the same total number
of six days of failure, the geometric severity scores differ however, with 3 and 16, respectively. In
the latter set, the longer lengths of runs resulted in a higher severity score in spite of the same total
number of runs in the two sets of recordings. A frequent relief of bowel movements in-between in
the first set resulted in a low severity score. Therefore, this geometric score properly reflects the
severity of patient’s discomfort due to no defecation for several days. One can evaluate the efficacy
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of nursing interventions by analyzing four weeks’ severity scores of three groups. The severity scores
of four weeks are considered as observations of a four-dimensional variable.

Fifty six schizophrenic inpatients who demonstrated antipsychotic drug induced constipation during
the first two weeks of pre-trial period were randomly assigned to three groups in the study of Yang
(1992). Twenty patients were assigned to control group and 18 patients each to two experimental
groups. Patients in the experimental group 2 was given additional dietary fiber supplements than
those in the experimental group 1. The purpose of the analysis is to test whether the interventions
considered in the trial are efficacious and to search for the most efficacious nursing interventions of
relieving and preventing constipation induced by antipsychotic drugs. Bowel movement status of
all patients were monitored everyday for four weeks after the initiation of intervention. The data
of geometric severity scores of four weeks are to be analyzed in this paper. Each week of the bowel
movement status of all 56 patients were transformed into geometric severity scores and based on
the four-dimensional severity score vector. The multivariate statistics described in Section 2 were
computed:
U= (Ub,...,Uty, Uls, ..., U, Uks, ..., Uss)"
= (165,193, 212, 258, 180, 202, 240, 301, 120, 81, 130, 125)",

where indexes i, 7 of Ufj represents the order of control group and experimental group 1 and 2, for
1 or j = 1,2,3, respectively, and g represents the coordinate, corresponding to four weeks in our
study. The standardized U statistic corresponds to

u = (—0.439, 0.380, 0.936, 2.280, 0, 0.643, 1.754, 3.537, —1.329, —2.568, —1.012, —1.171)T.

From these values, one can roughly guess intervention efficacy in the trial. An improvement at
the fourth week is noted for the experimental group 1 compared to the control group with the
values (—0.439, 0.380, 0.936, 2.280) of the standardized statistics. The standardized statistics value
(0, 0.643, 1.754, 3.53) corresponding control versus experimental group 2 demonstrates a dramatic
improvement among patients with the intervention as weeks pass by. But, no definite improvement
is observed when the two experimental groups are compared. Now we proceed to an overall testing
below.

First, the concordance probabilities of type 1 and 2, estimated from the data, range from 0.266 to
0.347 and from 0.284 to 0.319, respectively. The covariance matrix, ¥ of u, is obtained based on
(2.8), (2.9)~(2.17) and the test statistic u” £7! u is found to be 21.211, and P(x?(12) > 21.211) is
0.047. Hence, there is a significant difference for the outcomes of four weeks among three intervention
groups.

By considering ties, the multivariate test statistics, €2, is given by

Q= (9127 e szll2)Qi3v e 7941137Qé37 R ,033)T
= (0.780,1.445,1.486, 2.131, 1.226, 1.580, 2.276, 3.097, 0.554, 0.023, 1.109, 1.317)T.

Using the estimates of Kendall’s 7 and Spearman’s p between coordinates, which range from 0.098
to 0.203 and from 0.151 to 0.323, respectively, the covariance matrix of £, ¥* is obtained based
on the variance of (3.1) and covariance of (3.2), (2.10)~(2.13). The value of the test statistic,
Q72*'Q, which is approximately x*(12) distribution, is 28.799 and thus P(x?(12) > 28.799) is
0.0042. In our data, there is an extensive tied observations. As the variance of the tied data is
smaller than that of no tied case, the test statistic for the tied version, QTZ* 72 is larger than
u? £7' u. Thus, the test result of the tied case is found to be more significant.
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6. Discussion

The geometric severity score proposed in this paper for the analysis of data of Yang (1992) summa-
rizes information on both the number and lengths of runs, and being unable to defecate for many
consecutive days are more heavily reflected in higher scores than an irregular bowel habit. As it
is difficult to know the true distribution function of these geometric severity scores under control
and interventions, we relied on nonparametric approaches in testing the effectiveness of the nursing
interventions. The purpose of this article was to develop a multivariate test of k samples based
on ranks, by making minimal assumptions about the underlying distributions. This nonparametric
multivariate test is very simple to compute for any dimension of multivariate vector and number of
samples, as the covariances are simple functions of concordance probabilities, Kendall correlation
- coefficient and sample sizes.

In the analysis of patients’ bowel movement data, the sum of severity scores of each week resulted
in heavily tied groups. When the variance of the test statistic for a tied version is applied to this
data, results were more significant than that of the statistic with the variance of not-considering tied
data. One of the possible solutions is that discreteness will disappear or at least will be decreased
if one generates the sum by accumulating more than one week’s severity scores, and the resulting
sum of severity scores will be generally continuous. Above all, the test statistic is easy to compute
for a data of non-normal character in any practical dimension.

Appendix: Proof of Theorem

To derive the covariance matrix of the multivariate k£ sample test, one does not need to calculate the

!
covariance of every combination between Ug, and U?, forany 1 < g, ¢’ <pandu,v,s,t € {1,...,k},
but one simply needs to confine to two or three independent continuous bivariate cumulative distri-
bution functions denoted by F; (z,y), j = u, v, w, instead of Fj (0o, ...,Z4,00,...,L4,00,...,00),

where = and y indicate variables for g and g’-coordinates respectively and j’s are the subscripts of
treatment groups compared in the U statistics. The cumulative distribution Fj(z,y), j = u,v,w is
defined as

z  pry
Ben=[ [ fwwmdnd, (A1)
—0o0 —o0
where f; represents the respective density function.

Using the approache of Bennett (1967), we have the mean value of the U statistics of (2.1)

Moy Moy

BUL) =Y, Y E(@®(@iug, Titug)), (A.2)
i=1i’'=1

where E(¢(Tiug, Tirwg)) = [ Fu (z,00) dF, (z,00). For the g'-coordinate, E(@(Ziug, Tirng)) is cal-
culated from the integration [ F, (oo,y)dF, (co,y).
The covariance between U statistics of the same coordinate g, (2.10) is induced by the following
formula, when 1 <u<v,t<k,v#t

Ty TNy Tt

CUL, UL) =D 3" C((@ing: Tirug), B(Ting, Tiney))
Ny Mo Nt
+ 303N C(P(@iug, Tirng) $(@irrug, Tirmeg)), (A.3)

Qg i
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where

c (¢($i“9’xilvg)’ ¢("Eiu95 xi”tg)) = /FU (377 Oo)Ft (‘777 OO) dF, (:E, OO)

- U Fy (z,00)dFy (x,oo)} U F, (x,00)dF, (z,00)|, (A.4)
C(D(Ziug, Tirng), P(Tirrag, Tirgg)) = 0.

By using F = F, = F, = F; under Ho, we have [ F*(z,00)dF(z,00) = 1/3 and [ F(z,00)d
F(z,00) = 1/2 in the previous integration. Hence, C(UY,,U%,) = nyn,n:/12.

For the coordinate g’, the covariance between U statistics in (2.11) is calculated as following: For
1<s<u<v<k,

Ty Ny Mg

C (ngln U.g;) - Z Z Z C(¢(miug’7 xi’vg’)v (b(wi”sg’ ’ Iiug’))

i

Ny Ny TNg

+ Z Z Z C(¢($iug/, zi/vg/)a ¢(wi”sg’>mi”’ug’))7

- A LA 1

where

C (¢(xiug’ s xi’vg’)y ¢(wi”sg’7 wiug’)) = / F, (OO, y)(l - F; (OO, y))dFu(OO, y)

- [ [ Fuoon)ibuo, y)} [ 0= Fuloo,0)aFu (o0,
C(P(@ing’ s Tirng')s H@irrsgry Tirrugr)) = 0.

Hence, C(U{{;, Us%l) = —ny,nyn,/12. Covariances of (2.12) and (2.13) are similarly calculated.

The covariance between U statistics of two different coordinates g and ¢’ in (2.14) is, for 1 < u <
v,t <k v#t,

Ny Ny Tg

C (U{ljm Uf;) = Z Z Z C(¢(xiug)wi’vg)a ¢(xiug’a Cci”tg'))

i i

Ty My My

+ Z Z Z C(¢($iu97$i/vg)7 ¢(xi”ug’uxi”’tg'))a

i#il! 4 Fids

where
C (@@, 5009), $@ingsa0r)) = [ [ P (0,000 (00,) 4B (2,9)
- [ / Fv(a:,oo)dFu(x,oo)} [ / Fi (00, y)dFu(c0,v)| , (A.5)

C(¢(xiug, mi’vg): d’(wi”ug' y mi”’tg’)) = O

We can use the definition of Kendall’s (1962, p.135) concordance probabilities in (A.5) and these
probabilities ((2.6) and (2.7)) can be expressed as follows:

= / / F(z,y)dF(z,) / / F(=, 00)dF (z, 00)
—2 / / Fla,y) dF (z,y), (A.6)
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Ty = // F(z,00)F(c0,y) dF(x,y)//F(m,oo)dF(x,oo)
= 2// F(z, 00)F(co,y) dF(z,y). (A7)

Hence, C(Uf{v,Ug;) = nunyn:(2m2 — 1)/4. The other covariances of (2.14)~(2.17) are similarly
calclulated.
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