DOI QR코드

DOI QR Code

라만 라이다 시스템을 이용한 라이다 중첩함수 산출

Retrieval of Lidar Overlap Factor using Raman Lidar System

  • 노영민 (광주과학기술원 환경공학과) ;
  • ;
  • 신동호 (광주과학기술원 환경공학과) ;
  • 이경화 (광주과학기술원 환경공학과)
  • Noh, Young-M. (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Muller, Detlef (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Shin, Dong-Ho (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Lee, Kyung-Hwa (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology)
  • 발행 : 2009.10.31

초록

The range-dependent overlap factor of a lidar system can be determined experimentally if a Raman backscatter signal by molecule is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. The direct determination of the overlap profile is presented and applied to a lidar measurement according to variation of telescope field-of-view and distance between telescope and transmitting laser. The retrieval of extinction coefficient by Raman method can generate high errors for heights below planetary boundary layer if the overlap effect is ignored. The overlap correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

키워드

참고문헌

  1. 노영민, 김영민, 김영준, 최병철(2006) GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에 서의 라이다 비 연구, 한국대기환경학회지, 22(1), 1-14
  2. 노영민, 김영준, Delef Muller (2007) 역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출, 한국대기환경학회지, 23(1), 97-109 https://doi.org/10.5572/KOSAE.2007.23.1.097
  3. Ancellet, G.M., M.J. Kavaya, R.T. Menzies, and A.M. Brothers (1986) Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver, Appl. Opt., 25, 2886-2890 https://doi.org/10.1364/AO.25.002886
  4. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113-7131 https://doi.org/10.1364/AO.31.007113
  5. Behrendt, A. and J. Reichardt (2000) Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filterbased polychromator, Applied Optics, 39(9), 1372-1378 https://doi.org/10.1364/AO.39.001372
  6. Chung, C.E., V. Ramanathan, D. Kim, and I.A. Podgorny (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. D24207. J. Geophys. Res., 110. doi:10.1029/2005JD006356
  7. Dubovik, O., B.N. Holben, T. Lapyonok, A. Sinyuk, M.I. Mishchenko, P. Yang, and I. Slutsker (2002) Non-spherical aerosol retrieval method employing light scattering by spheriods, Geophysical Research Letter, 29, 54-1-54-4 https://doi.org/10.1029/2001GL014506
  8. Gentry, B.M., C. Huailin, and L. Steven (2000) Wind measurements with 355-nm molecular Doppler lidar, Optics Letters, 25(17), 1231-1233 https://doi.org/10.1364/OL.25.001231
  9. Halldorsson, T. and J. Langerholc (1978) Geometrical form factors for the lidar function, Appl. Opt., 17, 240-244 https://doi.org/10.1364/AO.17.000240
  10. IPCC (2007) Climate change 2007: The Physical Science Basis
  11. Kim, J.E., Y.J. Kim, and Z. He (2006) Temporal variation and measurement uncertainty of UV aerosol optical depth measured from April 2002 to July 2004 at Gwangju, Korea, Atmospheric Research, 81(2), 111-123 https://doi.org/10.1016/j.atmosres.2005.11.006
  12. Klett, J.D. (1981) Stable analytical inversion solution for processing lidar returns, Appl. Opt., 20(2), 211-220 https://doi.org/10.1364/AO.20.000211
  13. Mattis, I., A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Muller, Y.F. Arshinov, S.M. Bobrovnikov, and I.B. Serikov (2002) Relative-humidity profiling in the troposphere with a Raman lidar, Appl. Opt., 41, 6451-6462 https://doi.org/10.1364/AO.41.006451
  14. Muller, D., I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl (2005) Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: microphysical particle characterization, Journal of Geophysical Research, 110, D17201, doi:10.1029/2004JD005756D
  15. Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto (2004) Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophysical Research Letter, 31, L23103, doi:10.1029/2004GL021105
  16. Noh, Y.M., Y.J. Kim, and D. Muller (2008) Seasonal characteristics of lidar ratio measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42, 2208-2224 https://doi.org/10.1016/j.atmosenv.2007.11.045
  17. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama (2007) Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, doi:10.1016/j.atmosres.2007.03.006
  18. Ramanathan, V., F. Li, M.V. Ramana, P.S. Praveen, D. Kim, C.E. Corrigan, and H. Nguyen (2007) Atmospheric brown clouds: hemispherical and regional variations in long range transport, absorption, and radiative forcing. D22S21, J. Geophys. Res., 112. doi:10.1029/2006JD008124
  19. Ramanathan, V. and G. Carmichael (2008) Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221-227 https://doi.org/10.1038/ngeo156
  20. Sasano, Y., H. Shimizu, N. Takeuchi, and M. Okuda (1979) Geometrical form factor in the laser radar equation:an experimental determination, Appl. Opt., 18, 3908-3910 https://doi.org/10.1364/AO.18.003908
  21. Sassen, K. and G.C. Dodd (1982) Lidar crossover function and misalignment effects, Appl. Opt., 21, 3162-3165 https://doi.org/10.1364/AO.21.003162
  22. Velotta, R., B. Bartoli, R. Capobianco, and N. Spinelli (1998) Analysis of the receiver response in lidar measurements, Appl. Opt., 37, 6999-7007 https://doi.org/10.1364/AO.37.006999
  23. Wandinger, U. and A. Ansmann (2002) Experimental determination of the lidar overlap profile with Raman lidar, Applied Optics, 41(3), 511-514 https://doi.org/10.1364/AO.41.000511
  24. Whiteman, D.N., S.H. Melfi, and R.A. Ferrare (1992) Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Appl. Opt., 31, 3068-3082 https://doi.org/10.1364/AO.31.003068