Abstract
This paper proposes the direction distribution of surface normal vectors as a feature descriptor of three-dimensional models. Proposed the feature descriptor handles rotation invariance using a principal component analysis(PCA) method, and performs mesh simplification to make it robust and nonsensitive against noise addition. Our method picks samples for the distribution of normal vectors to be proportional to the area of each polygon, applies weight to the normal vectors, and applies interpolation to enhance discrimination so that the information on the surface with less area may be less reflected on composing a feature descriptor. This research measures similarity between models with a L1-norm in the probability density histogram where the distances of feature descriptors are normalized. Experimental results have shown that the proposed method has improved the retrieval performance described in an average normalized modified retrieval rank(ANMRR) by about 17.2% and the retrieval performance described in a quantitative discrimination scale by 9.6%~17.5% as compared to the existing method.
본 논문에서는 메쉬 법선 벡터들의 방향 분포를 3차원 모델의 특징 기술자로 제안한다. 특징 기술자로써 요구되는 회전 불변을 주성분 분석법(PCA)으로 처리하고 잡음첨가에 강건하도록 메쉬 간략화를 수행한다. 표면적이 작은 면에 대한 정보가 특징 기술자를 구성하는데 더 적게 반영되도록 법선 벡터의 분포를 각 다각형의 면적에 비례하게 표본을 뽑아 법선 벡터에 가중치를 적용하고 보간하여 변별력을 높인다. 모델간의 유사도는 특징 기술자의 거리를 정규화한 확률 밀도 히스토그램의 L1-norm으로 측정한다. 제안한 방법이 기존 방법에 비해 검색 순위 평균(ANMRR)으로 나타낸 검색 성능이 약 17.2%, 정량적 변별 척도로 나타낸 검색 성능이 최소 9.6%에서 최대 17.5%까지 향상되었음을 알 수 있었다.