Flame Detection using Region Expansions and On-line Variances in Infrared image

적외선 영상에서 영역확장과 온라인 분산을 이용한 화염 검출

  • Published : 2009.11.30

Abstract

In this paper, we propose a flame detection method using region expansions and on-line variances in outdoor infrared video sequences. To segment flame candidates' regions in infrared images, we first, extract initial regions by high threshold values in infrared images and then the segmented regions are expanded to their neighbors with similar high intensity values. The segmented regions could be non-flame areas like bare-grounds and buildings. Therefore, to detect flame regions in the segmented regions, the segmented regions which have high intensity values in infrared image, are tracked using bounding regions in frame sequences. Variances in the tracked regions are calculated effectively by on-line updates to measure intensity variations on the tracked regions. Experiments show that the proposed method, which is based on region expansions and the average of on-line variances in the regions, is efficient to detect flames in infrared image.

본 논문에서는 적외선 영상에서 영역확장 및 온라인 분산을 이용한 화염검출 방법을 제안한다. 본 논문에서 제안된 화염검출 방법은 화염 후보영역을 효과적으로 검출하기 위하여, 먼저 적외선 자기 영상에 높은 임계값을 적용하여 초기 화염영역의 후보영역을 분할하고, 영역확장 방법을 이용하여 유사한 높은 값을 갖는 이웃영역으로 확장시켜 최종후보영역을 검출한다. 분할된 후보영역은 나대지 와 건물같은 비 화염 영역을 포함할 수 있기 때문에, 화염 영역을 검출하기 위하여 분할영역을 시간에 따라 추적하면서, 각 후보영역의 밝기 값의 변화 정도를 추적영역의 분산을 온라인 갱신에 의해 효과적으로 계산하였다. 적외선 영상에서의 실험을 통하여 영영 확장 방법과 온라인 분산에 의한 제안방법이 적외선 영상에서 효율적으로 화염을 검출함을 보였다.

Keywords

References

  1. F.Gomez-Rodriguez et al, "Smoke Monitoring and measurement Using Image Processing. Application to Forest Fires," Automatic Target Recognition XIII, Proceedings of SPIE Vol.5094, pp. 404-411, 2003. https://doi.org/10.1117/12.487050
  2. Nobuyuki Fujiwara, Kenji Terada, "Extraction of a Smoke Region Using Fractal Coding," International Symposium on Communications and Information Technologies, pp. 659-662, Sapporo, Japan, Oct. 26-29, 2004.
  3. B.Ugur Toreyin et al, "Wavelet based real-time smoke detection in video," Signal Processing:Image Communication, EURASIP, Elsevier, Vol. 20, pp. 255-26, 2005.
  4. W.Phillips III et al, "Flame Recognition in Video," In Fifth IEEE Workshop on Applications of Computer Vision, pp. 224-229, Dec. 2000.
  5. Che-Bin Liu, "Vision Based Fire Detection:" icpr,pp.134-137, 17th International Conference on Pattern Recognition (ICPR'04) - Vol.4, 2004.
  6. Thou- Ho Chen et al, "An intelligent Real-Time Fire-Detection Method Based on Video Processing:' Proceedings. IEEE 37th Annual 2003 International Carnahan Conference on Security Technology, pp.104-111, 2003.
  7. Wen-Bing Horng et al, "A new image-based real-time flame detection method using color analysis," Proceedings of Networking, Sensing and Control, pp. 100-105, 2005.
  8. A.Ollero et al, "Techniques for reducing false alarms in infrared forest-fire automatic detection systems:" Control Engineering Practice 7, pp. 123-131, 1999. https://doi.org/10.1016/S0967-0661(98)00141-5
  9. B.C.Arrue et al, "An Intelligent System for False Alarm Reduction in Infrared ForestFire Detection," IEEE Intelligent Systems, pp. 64-75, 2000.
  10. Martinez-de Dios J.R. et al, "Distributed Inteligent Automatic Fire Detection System," INNOCAP'98, 28th of 29th of April, Grenoble, Spain.
  11. Behcet Uur Toreyin, et al, "Fire detection in infrared video using wavelet analysis," Opt. Eng., Vol. 46, 2007.
  12. S.Briz et al, "Reduction of false alarm rate in automatic forest fire infrared surveillance systems," Remote Sensing of Environment 86, pp. 19-29, 2003. https://doi.org/10.1016/S0034-4257(03)00064-6
  13. Li, Z. et al, "A review of AVHRR-based fire active fire detection algorithm: Principles, limitations, and recommendations," Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort (Eds. F. Ahem, J,G. Goldammer, C. Justice), p. 199-225.
  14. ANDJ DHUNGANA, B.E.E. "SEGMENTATION OF INFRARED IMAGES," Texas Tech University, Degree of MASTER OF SCIENCE, 2002.
  15. Dr. S. C. Liew. "Electromagnetic Waves," Centre for Remote Imaging, Sensing and Processing. http://www.crisp.nus.edu.sg/ research/tutorial/em.htm
  16. Vladik Kreinovich et al, "On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems," Information Sciences: an International Journal, Vol. 177, PP. 3228-3238, Issue 16, 2007. https://doi.org/10.1016/j.ins.2006.11.007
  17. B. P. Welford, "Note on a method for calculating corrected sums of squares and products," Technometrics 4(3): pp. 419-420, 1962. https://doi.org/10.2307/1266577
  18. Algorithms for calculating variance, http://en.wikipedia.org/wiki/Algorithms_ for_calculating_variance#cite_note-0.
  19. 김동근, "적외선 비디오에서 Haar 웨이블릿과 이동평균을 이용한 화염검출" 정보처리학회논문지B, 제16-B권, 제 5호, pp. 367-376, 2009.