DOI QR코드

DOI QR Code

Brittle rock property and damage index assessment for predicting brittle failure in underground opening

지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가

  • 이강현 (고려대학교 건축사회환경공학부) ;
  • 방준호 (고려대학교 건축사회환경공학부) ;
  • 김진하 (에스코 컨설턴트) ;
  • 김상호 (대림산업주식회사 토목사업부) ;
  • 이인모 (고려대학교 건축사회환경공학부)
  • Published : 2009.12.31

Abstract

Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

본 논문은 대심도 또는 과지압 암반에서 2차지압으로 인해 발생되는 취성파괴와 관련한 실내실험을 수행하고, 취성파괴 현상을 잘 예측할 수 있는 CWFS(Cohesion Weakening Frictional Strengthening)모델을 이용한 수치해석을 수행하였다. 암석의 거동을 분석하고 손상의 함수인 암석강도정수를 도출하기 위하여 일축압축강도실험과 손상제어실힘을 수행하였다. 일축압축강도실험결과 균열개시응력은 화강암, 편마암 구분 없이 일축압축강도의 41~42% 정도로 분석되었으며, 반면 균열손상응력은 화강암은 일축압축강도의 75%, 편마암은 일축압축강도의 97%의 값으로 분석되었다. 손상제어실험결과 균열손상응력과 최대하중은 Peak하중 이후 감소하는 것으로 나타났다. 또한 점착력은 감소하고 마찰각은 증가하는 양상을 보였다. Peak하중 이전에는 탄성계수가 증가하고 Peak하중 이후에는 감소하였다. 그리고 포아송비는 손상이 진행될수록 증가하는 양상을 보였다. 일축압축강도실험과 손상제어실험의 균열개시응력과 균열손상응력의 비교분석결과 손상제어실험의 균열개시응력은 일축압축강도실험에서 얻어진 균열개시응력의 범위에서 변화하는 양상을 보였고, 균열손상응력은 일정 손상수준에서 일축압축강도실험에서 얻어진 값보다 작은 값으로 나타났다. 실내실험결과로부터 CWFS모델의 입력 파라미터를 도출하여 수치해석에 적용하여 취성파괴 발생 한계토피고를 구했다. CWFS모델을 이용한 수치해석으로부터 예측된 한계토피고와 손상지수로부터 예측된 한계토피고를 비교한 결과, 취성파괴 발생 한계토피고를 정확히 예측하지 못하는 결과를 나타냈다. 따라서 원형터널에만 적용기한 손상지수를 사용하는 것은 문제가 있다고 판단된다. 이를 개선하기 위해 터널의 형상을 고려한 형상계수를 손상지수에 적용하였다. 터널의 형상을 고려한 수정된 손상지수로부터 예측된 한계토피고는 수치해석결과와 거의 동일한 결과를 보였다.

Keywords

References

  1. 대림산업 (2009), OO 건설공사 지반조사 보고서.
  2. 천대성, 정용복, 박찬, 적석원 (2007), “CWFS모델변수 결정을 위한 손상제어시험 및 이르 활용한 취성파괴 모델링”, 터널기술, 한국터널공학회 논문집, 제9권, 제3호, pp. 263-273.
  3. Cai, M., Kaiser, PK., Tasaka, Y., Maejima, T., Morioka, H. Minami, M. (2004), "Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations", International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 833-847.
  4. Diederichs, M.S. (1999), "Instability of hard rockmasses: the role of tensile damage and relaxation", Ph.D. thesis, University of Waterloo.
  5. Kaiser, P.K., Diederichs, M.S., Martin, C.D., Sharp, J. Steiner, W. (2000), "Underground works in hard rock tunneling and mining", Proceedings of GeoEng, Melbourne, Australia.
  6. Hajiabdolmajid, V. (2001), Mobilization of strength in brittle failure of rock, Ph. D Dissertation Queen's University, Canada, pp. 268.
  7. Hajiabdolmajid, V., Kaiser, P.K. and Martin, C.D. (2002), "Modelling brittle failure of rock", International Journal of Rock Mechanics and Mining Sciences, Vol. 39, No. 6, pp. 731-741. https://doi.org/10.1016/S1365-1609(02)00051-5
  8. Hoek, E. and Brown, E.T. (1980), Underground excavation in rock, The institution of Mining and Metallurgy, London.
  9. Martin, C.D., Chandler, N.A. (1994), "The progressive fracture of Lac du Bonnet granite", International Journal Rock Mechanics Mining Science & Geomechanics Abstracts Vol. 31, No. 6, pp. 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  10. Martin, C.D. (1997), "Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength", Canadian Geotechnical Journal, Vol. 34, pp. 698-725. https://doi.org/10.1139/cgj-34-5-698
  11. Martin, C.D., Kaiser, P.K. and McCreath, D.R. (1999), "HoekBrown parameters for predicting the depth of brittle failure around tunnels", Canadian Geotechnical Journal, Vol. 36, pp. 136-151. https://doi.org/10.1139/cgj-36-1-136
  12. Martin, C.D. (2001), Rock stability considerations for siting and construction a KBS-3 repository, SKB Technical Report.
  13. Martin C.D. (2005), Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites, SKB Report.