Cell Growth and Lipid Production from Fed-batch Cultivation of Chlorella minutissima according to Culture Conditions

유가식 배양에서 배양조건에 따른 Chlorella minutissima의 생육 및 지질생산

  • Oh, Sung-Ho (College of Bioscience and Biotechnology Division of Biomaterials Engineering, Kangwon National University) ;
  • Han, Jae-Gun (College of Bioscience and Biotechnology Division of Biomaterials Engineering, Kangwon National University) ;
  • Kim, Na-Young (College of Engineering Department of Biological Engineering, Kangwon National University) ;
  • Cho, Jeong-Sub (DooSan EcoBizNet) ;
  • Yim, Tae-Bin (DooSan EcoBizNet) ;
  • Lee, Shin-Young (College of Engineering Department of Biological Engineering, Kangwon National University) ;
  • Lee, Hyeon-Yong (College of Bioscience and Biotechnology Division of Biomaterials Engineering, Kangwon National University)
  • Published : 2009.08.29

Abstract

The culture condition of growing Chlorella minutissima was optimized to produce biodiesel for fed-batch cultivation. First, under heterotrophic cultivation, the optimum level of glucose was determined to be 10 g/L for 20 days. After, three cultivation conditions were operated: autotrophic, heterotrophic, and mixotrophic growth. The lipid level and the maximum cell concentration from the fed-batch heterotrophic process were 32.0 (%, v/v) and 15.0 (g-dry wt./L) in 20 L flask, respectively. In addition, since the relatively constant specific lipid production rate was observed as 0.040 (% lipid/g-dry wt./day) at the latter period of cultivation time, the fed-batch process could maintain continuous lipid production. Fed-batch process is higher than those values from the batch process. The lipids from the fed-batch process contained over 38% of $C_{18}$, known as the suitable composition for the biodiesel application. For mixotrophic and heterotrophic growth under fed-batch condition, glucose was proved to be an appropriate carbon source for a large scale outdoor cultivation. For fed-batch cultivation, the feeding rate of seawater medium containing glucose was decided to be 0.5 L/day. The mixotrophic cultivation maintained maximum cell concentration of 24 (g-dry wt./L) and the lipid level of 43 (%, w/w). The lipid composition from this process was also proved to be suitable for the biodiesel production. The fatty acids from the mixotrophic growth contains 18% of $C_{17}$ and 49% of $C_{18}$, implying It also tells that C. minutissima is a suitable resource of biodiesel. Especially, the mixotrophic cultivation with fed-batch process might be useful for the large scale cultivation for the biodiesel production.

본 연구는 다양한 조건에서의 실험을 위한 C. minutissima의 500 mL flask의 종 배양을 통해 고농도의 균주 획득 후, 가장 효율적인 배양 방식을 보인 fed-batch를 통한 autotrophic, heterotrophic, mixotrophic 조건하에서 바이오디젤용 지질 생산의 최적 배양 조건을 찾아야했다. 먼저, fed-batch의 Heterotrophic 배양 시 유기 탄소 원으로 glucose의 가장 효율적인 안정한 초기농도가 10 g/L임을 확인했다. 이 후, 20 L 배양기를 이용한 batch, fed-batch의 heterotrophic 배양에서 fed-batch배양의 경우 지질 생성양이 1.62배 정도 더 높았으며, 최대 균체량 역시 4 (g-dry wt./L)정도 높으며, 또한 디젤용 지질로 적합한 $C_{18}$의 조성 역시 49%이상 차지하여, 옥외 대량 배양 시 유기탄소 원으로 적절한 glucose의 이용을 통한 효율적인 배양방법임을 알 수 있다. 이 결과를 바탕으로, glucose를 포함한 배지를 0.5 L/day로 공급하여 유가 식 배양을 각 배양 조건에 따라 비교 실시했다. 그 결과 mixotrophic의 경우 다른 배양 조건에 비해 각각 24 (g-dry wt./L)의 최대 군체 농도와 함께 43 (%, w/w)의 높은 지질 생성량을 보였다. 또한 생성되는 지질의 조성이 균체 당 바이오 디젤용 양질의 지질 생성이 가능하였다. 또한 fed-batch 배양 이후 0.047 (% lipid/g-dry wt./day)의 비 생산 속도를 유지하며, 일정 균체 농도를 유지하는 경우 지속적인 지질 생성이 가능함을 보여주었다. 이러한 세 가지 배양 조건하에서 지질 추출을 통한 지방산 조성을 살펴본 결과 mixotrophic 배양 하에 디젤용으로 잘 알려진 $C_{17}$, $C_{18}$의 지방산 조성은 각각 18%와 49%의 생성을 보여주었다. 이 결과들을 바탕으로 이 균주를 이용해 옥외 배양이나 배양 조에서 대량 배양이 가능함을 확인했으며, 특히, 옥외배양을 위한 혼합영양 배양조건하에 배양 공정의 scale-up에 대한 추가적인 연구를 통해 C. minutissima 미세조류로부터 바이오 디젤의 보다 경제적 생산이 가능하도록 하고자 한다.

Keywords

References

  1. Lim, Y. K., S. C. Shin, E. S. Yim, and H. O. Song (2008), The effective product method of biodiesel, J. Korean Ind. Eng. Chem. 19, 137-144
  2. Choi, J. D., D. K. Kim, J. Y. Park, Y. W. Rhee, and J. S. Lee (2008), Optimization of esterification of Jatropha oil by amberlyst-15 and biodiesel production,Chem. Eng. J. 46, 194-199
  3. Choi, S. H. , Y. T. Oh, and J. D. So (2006), Characteristics of exhaust emission by the application of biodiesel fuel and oxygenates as an altemative fuel in an agricultural diesel engine, J. of Biosystems Eng. 31, 457-462 https://doi.org/10.5307/JBE.2006.31.6.457
  4. Hyen, Y. Z. and H. S. Kim (2002), Conversion of vegetable oils into biodiesel fuel by continuous process, J. of Korean Oil Chemists' Soc. 19, 327-334
  5. Demirbas, A (2007), Progress and recent trends in biofuels, Pro. Ener. Comb. Sci. 33, 1-18 https://doi.org/10.1016/j.pecs.2006.06.001
  6. AI-Widyan, M. I. and Al-Shyoukh, A. O. (2002), Experimental evaluation of the transesterification of waste palm oil into biodiesel, Bioresour. Technol. 85, 253-256 https://doi.org/10.1016/S0960-8524(02)00135-9
  7. Jeon, S. M., I. H. Kim, J. M. Ha, and J. H. Lee (2008), Overview of technology for fixation of carbon dioxide using microalgae, J. Korean Ind. Eng. Chem. 19, 145-150
  8. Xiaoling, M. and W. Qingyu (2006), Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846 https://doi.org/10.1016/j.biortech.2005.04.008
  9. Haigh, W. G., T. F. Yoder, and L. Ericson (1996), The characterisation and cyclic production of a high1y unsaturated homoserine lipid in Chlorella minutissima, Biochim. Biophy. Acta. 1299, 183-190 https://doi.org/10.1016/0005-2760(95)00205-7
  10. Xian, M. S., W. Z. Xue, and C. Feng (2000), Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen source, Enzyme Microb. Technol. 27, 312 https://doi.org/10.1016/S0141-0229(00)00208-8
  11. Xiong, W., X. Li, J. Xiang, and Q, WU (2008), High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production, Appl. Microbiol. Biotechnol. 78, 29-36 https://doi.org/10.1007/s00253-007-1285-1
  12. Lee , Y. K., S. Y. Ding, C. H. Hoe, and C. S. Low (1996), Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor, J. Appl. Phycol. 8, 163-169 https://doi.org/10.1007/BF02186320
  13. http://www.utex.org/ (2009)
  14. Jung, M. M. and S, Rho (1999), Comparison of notochord length, dry weight and survival rate of flat fish, paralichthys olivacεus Temminck etschlegel larvae on different, Bulletin of the Marine Research Institute. 23, 23-28
  15. Yi, Y. J., H. Yin, and K, Luo (2005), Culture Conditions effect on the mycelium dry weight activating proteins produce, Hunan Nong Ye Da Xue Xue Bao. 31, 76-78
  16. Tan, W. and G. D. Hogan (1998), Dry weight and N partitioning in relation to substrate N supply, intemal N status and developmental stage in Jack Pine (Pinus banksiana Lamb.) seedlings, Implications for Modelling, Ann. Bot. 81, 195-201 https://doi.org/10.1006/anbo.1997.0539
  17. Iverson, S. J. S. L. C. Lang and M. H. Cooper (2001), Comparison of the B1igh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids. 36, 1283-1287 https://doi.org/10.1007/s11745-001-0843-0
  18. Cohen, Z., A. Vonahak, and A. Richmond (1988), Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum correlation to growth rete, J. Phycol. 24, 328-332
  19. Yoon, H. R., M. J. Paik, H. S. Shin, C. Yu, and P. Rinaldo (2000), Analysis of plasma free fatty acid cyanomethyl derivatives by GC-NPD for the diagnosis of mitochondrial fatty acid oxidation disorders, Chromatographia. 52, 538-543
  20. Kark, H. S. and S. L. Chong (1990), Effect of carbon source on the synthesis of phospho1ipid and fatty acid composition in chloroplast of Chlorella ellipsoidea,Korean J. Bot. 33, 49-54
  21. Han X., M. Xiao1ing, and W. Qingyu (2006), High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499-507 https://doi.org/10.1016/j.jbiotec.2006.05.002
  22. Xiaoling M. and W. Qingyu (2004), High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides, J. Biotechnol. 110, 85-93 https://doi.org/10.1016/j.jbiotec.2004.01.013
  23. Chen, Y., H. Qiang, and S. Kazuyuki (2000), Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions, Biochem. Eng. J. 6, 87-102 https://doi.org/10.1016/S1369-703X(00)00080-2