Antioxidant and Anti-inflammatory Activity of Ethanol Extract of Malus micromalus Makino in Jeju Island

제주도 자생 제주아그배 (Malus micromalus Makino) 추출물의 항산화와 항염증 활성

  • Lee, Ju-Yeop (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Kang, Min-Chul (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Ko, Kwang-Hyo (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Kim, Bong-Seok (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Han, Jong-Heon (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute) ;
  • Kim, Se-Jae (Department of Life Science, College of Natural Sciences, Cheju National University) ;
  • Kim, Gi-Ok (Jeju Bio-Industry Development Center, Jeju Hi-tech Industry Development Institute)
  • 이주엽 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 강민철 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 이정아 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 고광효 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 김봉석 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 한종헌 ((재)제주하이테크산업진흥원 생물자원산업화지원센터) ;
  • 김세재 (제주대학교 자연과학대학 생명과학과) ;
  • 김기옥 ((재)제주하이테크산업진흥원 생물자원산업화지원센터)
  • Published : 2009.08.29

Abstract

The antioxidant and anti-inflammatory activities of ethanol extract of Malus micromalus were studied in vitro. Ethanol extract of M. micromalus showed scavenging effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radicals. In addition, ethanol extract of M. micromalus inhibited the generation of superoxide anion ($O_2^-$) radical and uric acid by xanthine oxidase. We also investigated the effect of ethanol extract of M. micromalus on NO production in a lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Ethanol extract of M. micromalus significantly inhibited NO production and this inhibitory action was not due to the cytotoxicity. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was markedly down-regulated by ethanol extract of M. micromalus. These results indicate that the inhibitory action of ethanol extract of M. micromalus on NO production in LPS-stimulated macropages might be due in part to abrogation of iNOS and COX-2 protein induction. Taken together, this study suggests that ethanol extract of M. micromalus could contribute to the chemoprevention and therapy of oxidative stress and inflammation.

본 연구는 제주에 자생하고 있는 제주아그배의 생리활성, 즉 항산화 효과와 항염 효과를 알아보고자 수행하였다. 제주아그배의 항산화 활성을 측정하고자 비교 분석한 결과, 제주아그배 에탄을 추출물 (DPPH 소거활성 $IC_{50}$ 값, $16.1\;{\mu}g$/mL; NO 소거활성 $IC_{50}$$901.2\;{\mu}g$/mL; superoxide 소거활성 및 Xanthine oxidase 억제 활성 $IC_{50}$$42.5\;{\mu}g$/mL, $2.7\;{\mu}g$/mL)은 좋은 항산화 활성을 보였고, 그 분획물 중에서는 에틸아세테이트 분획물이 항산화 활성 실험 모두에서 높은 소거활성을 나타내었다. 따라서 항산화 활성이 좋은 제주아그배의 추출물의 항염증 효과를 탐색하기 위하여 대식 세포 모델을 이용하였다. LPS로 자극한 마우스 대식세포인 RAW 264.7 세포에서 NO 활성과 세포독성간의 상대적 비교지수인 선택지수를 이용하여 탐색한 결과 에탄을 추출물과 에틸아세테이트 분획물이 2.9와 12.2로 가장 높은 상대적 NO 생성 억제 활성을 보였다. 그리고 NO 생성 억제율에 대한 $IC_{50}$ 값은 각각 $16.7\;{\mu}g$/mL, $4.1\;{\mu}g$/mL으로 나타났다. 이런 결과를 기초로 하여 제주아그배의 에탄올 추출물의 NO 감소가 iNOS 단백질 감소에 의한 것임을 확인한 결과, 시료를 처리한 RAW 264.7 세포에서 iNOS 단백질이 농도 의존적으로 감소하였다. 또한 iNOS 단백질의 억제가 mRNA의 감소로 인한 것인지 조사하고자, RT-PCR을 통해 iNOS의 mRNA 발현을 조사한 결과, 단백질과 마찬가지로 농도 의존적인 mRNA 발현 감소를 볼 수 있었다. 제주아그배의 에탄을 추출물을 농도 별로 처리하였을 때 유의적으로 COX-2 단백질과 mRNA 발현이 농도 의존적으로 억제하였다. 분획물 중에서는 NO 활성과 세포 독성간의 상대적 비교지수인 선택지수가 높았던 에틸아세테이트 분획물이 에탄을 추출물보다도 NO, iNOS, COX-2의 억제 정도가 더 좋은 경향을 나타내었다.

Keywords

References

  1. Jeong, S. J., J. H. Lee, H. N. Song, N. S. Seong, S. E. Lee, and N. I. Baeg (2004), Screening for antioxidant activity of plant medicinal extracts, J. Korean Soc. Appl. Biol. Chem. 47, 135-140
  2. Kang, I. H., J. H. Cha, J. H. Han, S. W. Lee, H. J. Kim, S. H. Kwon, I. H. Han, B. S. Hwang, and W. K Whang (2005), Isolation of anti-oxidant from domestic crataegus pinnatifida bunge leaves, Kor. J. Pharmacogn. 36, 121-128
  3. Pratt, D. E., M. T. Huang, S. T. Ho, and C. Y. Lee (1992), Phenolic compounds in food and their effects on health (II), antioxidants and cancer prevention, Washington DC. p54-71
  4. Kim, E. C., S. Y. Ahn, E. S. Hong, G. H. Li, E. K. Kim, and K H. Row (2005), Extraction of whitening agents from natural plants and whitening effect, J. Korean lnd. Eng. Chem. 16, 348-353
  5. Kim, C. J. (1988), Pathophysiology. Cultural History. 47
  6. Willoughby, D. A. (1971), Human arthritis applied to animal models towards a better therapy, Annals of the Rheumatic Diseases. 34, 471-478 https://doi.org/10.1136/ard.34.6.471
  7. Knowles, R. G., and S. Mocada (1992), Nitric oxide as signal in blood vessels, TIBS. 17, 399-402 https://doi.org/10.1016/0968-0004(92)90008-W
  8. Monacada, S., R. M. Palmer, and E. A. Higgs (1991), Nitric oxide : physiology, pathophysiology, snd pharmacology, Pharmacol. Rev. 43, 109-142
  9. Nathan, C. (1992), Nitric oxide as a secretory product of mammalian cells, FASEB J. 6, 3051-3064
  10. Palmer, R. M., D. S. Ashton, and S. Monacada (1988), Vascular endothelial cells synthesize niπic oxide from L-argininε, Nature 333, 664-666 https://doi.org/10.1038/333664a0
  11. Kawamata, H., H. Ochiai, N. Mantani, and K. Terasawa (2000), Enhanced expression of inducible nitric oxide synthase by Junen-taiho-to in LPS-activated RAW 264.7 cells, a murine macrophage cellline, Am J. Chin Med 28, 217-226 https://doi.org/10.1142/S0192415X0000026X
  12. An, S. J., H. O. Pae, G. S. Oh, B. M. Choi, S. Jeong, S. I. Jamg, H. Oh, T. O. Kwon, C. E. Song, and H. T' Chung (2002), Inhibition of TNF $\alpha$ IL-1 $\beta$ and IL-6 productions and NF-$_kB$ activation in lipopolysaccharideactivated RA W 264.7 macrophages by catalposide, an iridoid glycoside isolated from Cataψa ovata G. Don (Bignoniaceae). lntermational lmmunopharmaxology. 2, 1173-1181
  13. Lee, H. J., Y. S. Jeong, S. Y. Ryu, and J. H. Ryu (1998), lnhition of nitric oxide synthcsis by 8-epixanthatin in activatεd RAW 264.7 cells, Yakhak Hoeji. 42, 540-543
  14. Lee, B. G., S. H. Kim, O. P. Zee, K. R. Lee, K. Y. Lee, J. W. Han, and H. W. Lee (2000), Suppression of inducible nitric oxide synthase expression in RA W264. 7 macrophages by two-carboline alkaloids extracted from Melia azedaraeh, Eur. J. Pharmacol. 406, 301-309 https://doi.org/10.1016/S0014-2999(00)00680-4
  15. Cemtti, P. A. (1994), Oxy-radicals and eaneer, Lancet 344, 862-863 https://doi.org/10.1016/S0140-6736(94)92832-0
  16. Scott, M. G., and R. E. Hancock (2000), Cationic antimicrobial peptides and their multifunctional role in the immune system, Rev lmmunol. 20, 143-149
  17. Lee, Y. N., K. S. Lee, and Y. M. Sin (2001), Wild Plants of Jeju Island, Yeomiji Botanical Garden, 238
  18. Lee, T. B. (2003) Coloured flora of Korea, Hyangrnoon Publishing Co., Seoul, Korea., p572
  19. Blosis, M. S. (1958), Antioxidant determination by the use a stale free radical, Nαture 26, 1199-1200
  20. Mosmann. T. (1983), Rapid colorimetric assay for the cellular growth and surγival : application to proliferation and cytotoxic assay, J. lmmun. Methods. 65, 5-63
  21. Parahad, R., and K. K. Sanford (1998), Protective action of plant polyphenols on radiation-induced chromatid breaks in cultured human cells, Anticancer Res. 18, 3263-3266
  22. Al-Sereiti, M. R., K. M. Abu-Amer, and P. Sen (1999), Pharmacology of rosemary (Rosmarinus officin-alis Linn.) and its theraputic potentials, Indian. J. Exp. Biol. 37, 124-130
  23. Kuttan, R., P. C. Sudheeran, and C. D. Josph (1987), Tumeric and curcumin as topical agents in cancer therapy, Tumori. 28, 29-31
  24. Lee, H. J., Y. S. Jeong, S. Y. Ryu, and .J. H. Ryu (1998), Inhition of nitric oxide synthesis by 8-epixanthatin in activated RA W 264.7 cells, Yakhak Hoeji. 42, 540-543
  25. Bennett, A., T. M. Del, I. F. Stamford, and T. Zebro (1977), Prostaglandins from tumers of human large bowel, Br. J. Surg. 35, 882-884