DOI QR코드

DOI QR Code

Soft Surface를 이용한 신호 중계 장치용 이중 대역 마이크로스트립 안테나

A Dual Baud Microstrip Antenna with Soft Surface for Gapfiller Applications

  • 김병철 (아주대학교 전자공학부) ;
  • 류준규 (한국전자통신연구원 방송통신융합부문) ;
  • 추호성 (홍익대학교 전자전기공학부) ;
  • 장대익 (한국전자통신연구원 방송통신융합부문) ;
  • 박익모 (아주대학교 전자공학부)
  • Kim, Byoung-Chul (School of Electrical and Computer Engineering, Ajou University) ;
  • Ryu, Joon-Gyu (Broadcasting and Telecommunications Convergence Research Laboratory, ETRI) ;
  • Choo, Ho-Sung (School of Electronics and Electrical Engineering, Hongik University) ;
  • Jang, Dae-Ik (Broadcasting and Telecommunications Convergence Research Laboratory, ETRI) ;
  • Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University)
  • 발행 : 2009.11.30

초록

본 논문에서는 soft surface를 이용하여 IEEE 802.11a/b 대역에서 10 dBi 이상의 이득과 유사한 모양의 복사 패턴과 이득을 가지며, 동작하는 신호 중계 장치용 안테나를 제안한다. 제안한 안테나의 크기는 $50{\times}56.5{\times}5.5\;mm^3$이고, soft surface를 포함한 접지면의 크기는 $175.0{\times}154.4\;mm^2$이다. 안테나는 동축 케이블을 이용하여 급전하였으며, 두께가 0.508 mm이고 비유전율이 3.38인 RO4003 기판 위에 설계하였다. 전산 모의 실험 결과, VSWR<2 기준으로 2.388~2.493 GHz와 5.561~6.051 GHB의 대역폭을 가지며, 각 대역의 중심 주파수에서의 이득은 10.63 dBi와 10.33 dBi이다.

In this paper, a dual band microstrip antenna with soft surface for gapfiller applications is proposed. The proposed antenna with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38 and a thickness of 0.508 mm, and operates in IEEE 802.11a/b bands. The size of the antenna is $50{\times}56.5{\times}5.5\;mm^3$ and the ground plane size including soft surface structure is $175.0{\times}154.4\;mm^2$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.388~2.493 GHz and 5.561~6.051 GHz for VSWR<2. The gains are 10.63 dBi and 10.33 dBi, respectively, for the lower and upper bands.

키워드

참고문헌

  1. H. J. Lee, P. S. Kim, T. H. Kim, and D. G. Oh, "Broadband systems based on DVB-S2 and mobile DVB-RCS and their future applications to broadband mobiles", in Proc. IEEE IWSSC, pp. 98-102, 2006
  2. A. Bazzi, Andrea G. G. Pasolini, and V. Schena, "Gap fillers for railway tunnels: technologies and performance", in Proc. EMC EuropeWorkshop 2005- Electromagnetic Compatibility of Wireless Systems, pp. 147-150, 2005
  3. J. G. Ryu, M. S. Shin, S. M. Han, D. I. Chang, and H. J. Lee, "The gap filler technology for mobile satellite system", Advanced Satellite Mobile Systems, pp. 333-336, 2008
  4. N. K. Lee, H. K. Kim, D. I. Chang, and H. J. Lee, "Providing seamless services with satellite and terrestrial network in mobile two way satellite environments", Lecture Notes in Computer Science, vol. 4773, pp. 551-554, 2007 https://doi.org/10.1007/978-3-540-75476-3_63
  5. S. E. Davidson, S. A. Long, and W. F. Richards, "Dual band microstrip antenna with monolithic reactive loading", Electron. Lett., vol. 26, pp. 936- 937, 1985 https://doi.org/10.1049/el:19850662
  6. A. E. Daniel, G. Kumar, "Tunable dual and triple frequency stub loaded rectangular microstrip patch antenna", IEEE Antennas Propagat. Soc. Int. Symp. Digest, vol. 4, pp. 2140-2143, 1995 https://doi.org/10.1109/APS.1995.531018
  7. S. S. Zhong, Y. T. Lo, "Single-element rectangular microstrip antenna for dual-frequency operation", Electron. Lett., vol. 19, pp. 298-300, 1983 https://doi.org/10.1049/el:19830208
  8. S. C. Pan, K. L. Wong, "Dual-frequency triangular microstrip antenna with a shorting pin", IEEE Trans. Antennas Propagat., vol. 45, pp. 1889-1891, 1997 https://doi.org/10.1109/8.650213
  9. K. C. Chao, F. S. Chang, H. T. Chen, C. H. Lu, and Y. T. Liu, "Dual-band operation vertical patch antenna for WLAN applications", TENCON 2007 IEEE Region 10 Conference, pp. 1-3, 2007
  10. Boccia G. Amendola, G. D. Massa, "A dual frequency microstrip patch antenna for high-precision GPS applications", Antennas and Wireless Propag. Lett., vol. 3, pp. 157-160, 2004 https://doi.org/10.1109/LAWP.2004.832127
  11. T. Fujimoto, K. Tanaka, "Stacked square microstrip antenna with a shorting post for dual band operation in WLAN applications", in Proc. Asia-Pacific Microwave Conference 2006, pp. 1979-1982, 2006
  12. E. Wang, S. Fang, "Dual-band patch antenna on magnetic substrate for WLAN communication", Microwave Optical Technol. Lett., vol. 49, pp. 1445- 1447, 2007 https://doi.org/10.1002/mop.22405
  13. S. Fang, J. Zheng, and X. Luan, "A novel multi arc slot antenna for WLAN aplications", in Proc. IEEE iWAT, pp. 209-212, 2005
  14. 김병철, 이상운, 한성민, 이호진, 추호성, 박익모, "위성 인터넷 서비스를 위한 두 개의 Y 형태 슬롯을 가지는 이중 대역 마이크로스트립 안테나", 한국전자파학회논문지, 19(2), pp. 145- 151, 2008년 2월 https://doi.org/10.5515/KJKIEES.2008.19.2.145
  15. F. Yang, Y. Rahmat-Samii, "Step-like structure and EBG structure to improve the performance of patch antennas on high dielectrics substrate", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., vol. 2, pp. 482-485, 2001
  16. Y. Rahmat-Samii, "The marvels of electromagnetic bandgap(EBG) structures: novel microwave and optical applications", in Proc. 2003 SBMO/IEEE MTT-S IMOC 2003, vol. 1, pp. 265-275, 2003
  17. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2074, 1999 https://doi.org/10.1109/22.798001
  18. Y. L. R. Lee, A. Chauraya, D. S. Lockyer, and J. C. Vardaxoglou, "Dipole and tripole metallodielectric photonic bandgap(MPBG) structures for microwave filter and antenna applications", IEE Proc. Optoelectron., vol. 147, pp. 395-400, 2000 https://doi.org/10.1049/ip-opt:20000892
  19. 기철식, 박익모, 한해욱, 이정일, 임한조, "포토닉 밴드갭 구조를 이용한 두껍고 유전상수가 높은 패치 안테나의 성능 향상", 한국전자파학회논문지, 13(1), pp. 1-6, 2002년 1월
  20. 오경현, 김병철, 배기형, 태현식, 박익모, "반사판을 가지는 이중 대역 비대칭 Sierpinski 프랙탈 배열 안테나의 설계", 한국전자파학회 2008년 종합학술발표회 논문집, 18(1), p. 88, 2008년 11월
  21. R. L. Li, G. DeJean, M. M. Tentzeris, J. Laskar, and J. Papapolymerou, "LTCC multiplayer based CP patch antenna surrounded by a soft-and-hard surface for GPS applications", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., vol. 2, pp. 651-654, 2003
  22. R. Li, G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar, "Radiation-pattern improvement of patch antenna on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology", IEEE Trans. Antennas Propagat., vol. 53, pp. 200-208, 2005 https://doi.org/10.1109/TAP.2004.840754
  23. P. S. Kildal, "Artificially soft and hard surfaces in electromagnetics", in Proc. European Microwave Conference, pp. 30-33, 1993
  24. M. T. Nguyen, B. Kim, H. Choo, and I. Park, "Effects of ground plane size on square microstrip patch antennas", Korea-Japan Joint Conference, pp. 107-110, May 2009
  25. S. W. Su, K. L. Wong, Y. T. Cheng, and W. S. Chen, "High-gain broadband patch antenna with a cavity ground for 5-GHz WLAN operation", Microwave Optical Technol. Lett., vol. 41, pp. 397- 399, 2004 https://doi.org/10.1002/mop.20151
  26. A. S. Elmezughi, W. S. T. Rowe, and R. B. Waterhouse, "Further investigations into edge-fed cavity backed patches", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., pp. 920-923, 2007

피인용 문헌

  1. A Dual Baud Microstrip Antenna with Soft Surface for Gapfiller Applications vol.20, pp.11, 2009, https://doi.org/10.5515/KJKIEES.2009.20.11.1145