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Abstract

We consider a nonparametric test procedure for the multi-sample problem with
grouped data. We construct the test statistics based on the scores obtained from the
likelihood ratio principle and derive the limiting distribution under the null hypothesis.
Also we illustrate our procedure with an example and obtain the asymptotic properties
under the Pitman translation alternatives. Also we discuss some concluding remarks.
Finally we derive the covariance between components in the Appendix.

Keywords: Grouped data, limiting power of test, multi-sample problem, nonparametric
test, permutation principle, Pitman translation alternative

1. Introduction

Suppose that we have independent K samples Xk1, . . . , Xknk
, K ≥ 3. Also suppose that

the k th population is governed by the unknown distribution function Fk, k = 1, . . . ,K. We
assume that the unknown distribution function Fk is continuous with density fk for each k
. With these data, our interest would be to test H0 : F1 = . . . = FK against the general
alternative, which says that at least one equality does not hold. A considerable amount of
work for the nonparametric procedure under the restricted alternatives has appeared in the
literature but for the general alternative, we have hardly found any procedure except the
Kruskal-Wallis test (1952), which has been widely used as a nonparametric procedure. For
the right censored data, Brookmeyer and Crowley (1982) proposed a median test. However
in this study, we consider the following situations. For the study of life time of light-bulb, we
may decide to observe the failure time of each bulb by visiting laboratory periodically because
of economic or any other reasons. Or for some specific part of a machine, we may decide to
inspect the machine periodically whether the specific part fails after we run the machine for
some fixed time. Therefore according to the pre-determined time schedule, we observe each
object under study whether it fails or not. In these cases, the data become discretized in
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spite of the continuity of life time distribution. We call those as the grouped data. Heitjan
(1989) reviewed extensively development of statistical inferences for the grouped data in
parametric setting and indicated some of the unsolved questions in theory and application
aspects. Based on these grouped data, for testing H0 : F1 = . . . = FK against the general
alternative, one may apply the Pearson’s chi-square test as a nonparametric procedure. Or
one may use the Kruskal-Wallis test by using the mid-rank among the observations which
fail in the same time-interval. However in case of two-sample setting, one may apply the
Puri and Sen’s procedure (1985) for the grouped data. Puri and Sen proposed a class of
nonparametric tests for the linear model. They derived the test statistics using the likelihood
ratio principle. Therefore the procedure may be optimal in the sense of the locally most
powerful test. Also Park (1993) proposed a class of nonparametric tests for the grouped and
right censored data.

In this paper, we consider to propose a nonparametric test procedure for the multi sam-
ple case with the grouped observations. In the next section we begin our discussion with
reviewing some results for the two sample case.

2. Review of some results for the two sample case

In this section, we review some results in case of K = 2. Since we are interested in the life
time data, without loss of generality, we will consider the positive half real line. Suppose
that the positive half real line [0,∞) is partitioned into d sub-intervals Ij = [aj , aj+1) for
any fixed time aj , j = 1, . . . , d with the notation that a1 = 0 and ad+1 = ∞ . We note that
we can not observe Xki directly but only have the information that Xki may be contained in
one of d sub-intervals. Therefore for each k = 1, 2 and for each i = 1, . . . , nk, each observable
random variable, X∗

ki, can be expressed as

X∗
ki =

d∑
j=1

IjZkij ,

where for every k , i and j = 1, . . . , d

Zkij =
{

1, Xki ∈ Ij

0, otherwise
.

Then for testing H0 : F1 = F2 against H1 : F1 ̸= F2 based on the following two samples,
X∗

11, . . . , X∗
1n1

and X∗
21, . . . , X∗

2n2
, Puri and Sen (1985) proposed the following linear rank

statistic of the form

Tn =
n1∑
i=1

d∑
j=1

∆njZ1ij =
d∑

j=1

∆njn1j ,

where ∆nj is some score for the observations in the j th sub-interval Ij and will be explicitly
defined later and n1j , the number of observations of the first sample in the j th sub-interval
Ij . We note that when the number of observations in each sub-interval, Ij , is at most
one, this corresponds to the no tied-value case. Then one may reject H0 : F1 = F2 in favor
of H1 : F1 ̸= F2 for large values of |Tn − E0(Tn)| , where E0(Tn) is the expectation of Tn

under H0 , which will be identified later also. For any given significance level, in order to
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determine the critical value, we need the null distribution of Tn . Then by applying the
permutation principle (cf. Good, 2000), we may obtain the null distribution of Tn for small
and reasonable sample sizes. For the large sample case, in order to derive the asymptotic
normality, first of all, we have to obtain the mean and variance of Tn under H0 . From Puri
and Sen (1985), we have

E0(Tn) = n1

d∑
j=1

∆nj

n1j + n2j

nn + n2
= n1∆̄n

and

V0(Tn) =
n1n2

n1 + n2 − 1


d∑

j=1

∆2
nj

n1j + n2j

n1 + n2
− ∆̄2

n

 ,

where n2j is the number of observations of the second sample in interval Ij . Then one can
show that the standardized form

Mn =
Tn − E0(Tn)√

V0(Tn)

converges in distribution to a standard normal random variable with the assumption about
the ratio between two sample sizes by applying the central limit theorem and Slutsky’s
theorem. You may refer to Puri and Sen (1985) for more detailed discussion for this subject.

Now we discuss the score function ∆nj in some detail. For this purpose, let ϕ(u) , 0 < u < 1
be any non-decreasing square-integrable function and define for each j = 1, . . . , d ,

∆nj =
1

F̂n(aj+1) − F̂n(aj)

∫ F̂n(aj+1)

F̂n(aj)

ϕ(u)du,

where F̂n is the empirical distribution function of the underlying distribution function F
based on the combined sample from the two samples. We note that if ϕ(u) = u , ∆nj is
the Wilcoxon score. Therefore one may obtain a class of nonparametric test statistics with
various choice of the score function ϕ . As a matter of fact, Puri and Sen (1985) derived the
optimal score functions using the likelihood ratio principle. The optimal score functions are
of the following form: for each j = 1, . . . , d ,

∆∗
j =

1
F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ψ(u)du,

where ψ(u) = −f ′(F−1(u))/f(F−1(u)) with the notation that F−1(u) = inf{t : F (t) ≥ u}
for 0 < u < 1 and f ′ is the derivative of f . Therefore if the underlying distribution function
F were completely known, we might obtain a locally most powerful test using ∆∗

j . In the
nonparametric case, since F and hence ψ(u) as well as ∆∗

j are unknown, one may try to
obtain asymptotically the optimal scores by substituting F̂n for F with suitable choice of ψ
. This may be achieved by using ∆nj . For example, if the underlying distribution function
F has a logistic density, then we may choose

ϕ(u) = 2u − 1

in ∆nj to produce the locally most powerful nonparametric test, which is again the Wilcoxon
score for the two sample case.
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3. Extension to the multi-sample problem

In this section, we consider an extension of the linear rank test procedure for the two
sample case to the multi-sample (K ≥ 3) problem for the grouped data. For this purpose,
let for each k , k = 1, . . . ,K ,

Tkn =
nk∑
i=1

d∑
j=1

∆njZkij =
d∑

j=1

∆njnkj

be the linear rank statistic from the th sample, where is the number of observations in the
j th sub-interval from the k th sample. Then we have that

E0(Tkn) = nk

d∑
j=1

∆nj

n�j
n

= nk∆̄n

and

V0(Tkn) = nk

n − nk

n − 1


d∑

j=1

∆2
nj

n�j
n

− ∆̄2
n

 ,

where n� =
∑K

k=1 nkj and n =
∑K

k=1 nk . Also for any k ̸= m , the null covariance
Cov(Tkn, Tmn) between Tkn and Tmn is as follows:

Cov(Tkn, Tmn) = −
nknm

n − 1


d∑

j=1

∆2
nj

n�j
n

− ∆̄2
n

 .

All the derivations of the above moments are based on the permutation principle. The
derivation of Cov(Tkn, Tmn) will be postponed until the appendix. Let Σ0n be the null
covariance matrix of (T1n, . . . , TKn)′ . Then we have the following result.

Lemma 3.1 For each n , the covariance matrix Σ0n has a rank K − 1 .

Proof : This can be proved by the fact that the elementary row or column operations do
not affect the rank (cf. Schott, 1997). For this, we note that

Σ0n =


n1(n − n1)

n − 1
· · · −

n1nK

n − 1
· · ·

−
n1nK

n − 1
· · ·

nK(n − nK)
n − 1




d∑
j=1

∆2
nj

n�j
n

− ∆̄2
n

 = Sn


d∑

j=1

∆2
nj

n�j
n

− ∆̄2
n

 .

Then it is enough to consider the rank of Sn for that of Σ0n . First by multiplying (n−1)/
√

nk

for the k th row and then 1/n
√

nk for the k th column of Sn and denoting

p′ = (
√

n1/n, . . . ,
√

nK/n),



Some nonparametric test procedure for the multi-sample case 241

we obtain that

S∗
n =


n − n1

n
· · · −

√
n1nK

n
· · ·

−
√

n1nK

n
· · ·

n − nK

n

 =

 1 · · · 0
· · ·

0 · · · 1

−


n1

n
· · ·

√
n1nK

n
· · ·√

n1nK

n
· · ·

nK

n

 = IK−pp′,

where IK is the K × K identity matrix. We note that the rank of Sn is the same as that
of S∗

n . Therefore it is enough to obtain the rank of S∗
n for that of Σ0n . For this, we note

that IK − pp′ is idempotent since

(IK − pp′)(IK − pp′) = IK − pp′.

Since the rank of IK − pp′ is

K∑
k=1

(1 − nk/n) = K − 1,

we obtain the result. ¤

Lemma 3.2 Under H0 : F1 = . . . = FK = F , for each j , j = 1, . . . , d , ∆nj converges in
probability to ∆j , where

∆j =
1

F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ϕ(u)du.

Proof : This result follows easily by noting that all the components in the expression of ∆nj

are the empirical probability and the score function ϕ is square-integrable.

In passing, we also note that under H0 : F1 = . . . = FK = F , Cn =
∑d

j=1 ∆2
nj

n�j
n

− ∆̄2
n

converges in probability to C0 =
∑d

j=1 ∆2
j [F (aj+1) − F (aj)] −

[∫ 1

0
ϕ(u)du

]2

by the same

reason for Lemma 3.2. Then for any version of the generalized inverse Σ−
0n of Σ0n , we may

propose the following test statistic for testing H0 : F1 = . . . = FK ,

Mn =

 T1n − E0(T1n)
· · ·

TKn − E0(TKn)


′

Σ−
0n

 T1n − E0(T1n)
· · ·

TKn − E0(TKn)

 .

Then we may reject H0 for large values of Mn . For any given significance level α , in
order to obtain the critical value Cn(α) , we need the null distribution of Mn . One may
obtain the null distribution for Mn by applying the permutation principle for any reasonable
sample sizes. For the large sample case, we consider obtaining the asymptotic distribution
by applying the large sample approximation. For this purpose, we assume that for each k ,
k = 1, . . . ,K ,

lim
n→∞

nk/n = λk for some λk ∈ (0, 1). (3.1)

Then we obtain the asymptotic distribution with the assumption (3.1). ¤
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Theorem 3.1 With the assumption (3.1), under H0 , the distribution of Mn converges in
distribution to a chi-square distribution with K − 1 degrees of freedom.

Proof : From Puri and Sen (1985), for each k , we see that (1/
√

n)(Tkn−E0(Tkn)) converges
in distribution to a normal random variable with mean 0 and variance λk(1 − λk)C0 with
Lemma 3.2 and assumption (3.1) by applying Slutsky’s theorem. Therefore from the Cramer-
Wold device (cf. Billingsley, 1985) and again using Slutsky’s theorem, we obtain that

1
√

n
(T1n − E0(T1n), · · · , TKn − E0(TKn))′

converges in distribution to a K-variate normal random vector with 0 mean vector and
covariance matrix Σ0 , where

Σ0 =

λ1(1 − λ1) · · · −λ1λK

· · ·
−λ1λK · · · λK(1 − λK)

C0,

whose rank is also K − 1 . We note that for each n , Σ0n is symmetric and has K − 1 as its
rank. Therefore from the Spectral Decomposition Theorem (cf. Mardia et al., 1979), Σ0n

can be written as
Σ0n = ΓnΩnΓ′

n,

where Ωn is a (K − 1)× (K − 1) diagonal matrix of non-zero eigenvalues of Σ0n and Γn is a
K×(K−1) orthogonal matrix whose columns are standardized eigenvectors. Then ΓnΩ−1

n Γ′
n

is a version of the generalized inverse of Σ0n , which in turn means that the random vector

(T1n − E0(T1n), . . . , TKn − E0(TKn))ΓnΩ−1/2
n

converges in distribution to a normal random vector with 0 mean vector and covariance
matrix IK−1 , where IK−1 is the (K − 1) × (K − 1) identity matrix. Therefore T1n − E0(T1n)

· · ·
TKn − E0(TKn)

 ′
ΓnΩ−1

n Γ′
n

 T1n − E0(T1n)
· · ·

TKn − E0(TKn)


converges in distribution to a chi-square random variable with K − 1 degrees of freedom.
Now we note that for each n , (T1n −E0(T1n), . . . , TKn −E0(TKn))′ lies in the space which
is spanned by Σ0n since

(1, . . . , 1)

 T1n − E0(T1n)
· · ·

TKn − E0(TKn)

 = 0,

where (1, . . . , 1)′ consists of the null space of Σ0n . This means that Mn is G-inverse
invariant for each n . Thus we obtain the result. ¤
Remark 3.1 As another statistic for testing H0 : F1 = . . . = FK = F , one may consider
using the following form:

KWn = (n − 1)
∑K

k=1 nk

(
Tkn/nk − ∆̄n

)2

n

{∑d
j=1 ∆2

nj

n�j
n

− ∆̄2
n

} = (n − 1)
∑K

k=1

(
Tkn − nk∆̄n

)2

nnk

{∑d
j=1 ∆2

nj

n�j
n

− ∆̄2
n

} (3.2)
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which is a modified version of Kruskal-Wallis (1952) statistic for the grouped data. The
derivation of this form and corresponding asymptotic normality will be discussed briefly in
the sequel. Since no generalized inverse of the covariance matrix is involved in the expression
of KWn , it may be useful for practical purpose. However since KWn does not reveal the
covariance structure explicitly, we used the form Mn for the purposes of discussion of the
asymptotic properties of our proposed test in the sequel.

4. An example

In order to illustrate our procedure, we consider the blood lead data, which were analyzed
by Hasselblad et al. (1980) under the log-normal assumption. The data consist of year,
ethnic group, age and lead level from 1970 to 1976. The blood lead levels were recorded with
some interval. In this study, suppose that we are interested in detecting any difference among
the three ethnic groups, white, black and Puerto Rican. For this purpose, we only consider
only the data of 1970. In the following table, we summarized the frequencies between the
blood lead levels and ethnic groups. We chose the Wilcoxon score, ϕ(u) = u and obtained

표 4.1 Data for blood levels and ethnic groups

lead level
races 0-14 15-24 25-34 35-44 45-54 55-64 65+ total
Black 317 2245 3424 1870 651 220 125 8852

Puero Rican 559 3148 2996 1074 306 109 65 8259
White 111 522 424 157 41 16 14 1285
total 987 5915 6844 3101 998 345 206 18396

the following statistics which are necessary for the analysis of our procedure:

T1n = 1184.39, T2n = 1178.63, T3n = 180.34

E0(T1n) = 1223.84, E0(T2n) = 1223.84, E0(T3n) = 177.66

Σ0n =

 15.37 −13.30 −2.07
−13.30 15.24 −1.93
−2.07 −1.93 4.00


and a generalized inverse Σ−

0n of Σ0n is as follows:

Σ−
0n =

 0.04 0.01 −0.06
0.01 0.05 −0.06
−0.06 −0.06 0.11

 .

Then we obtain that
Mn = 103.00,

which shows the strongly significant difference among the ethnic groups. Also if we consider
the Pearson’s chi-square test, then we obtain 848.54 for the chi-square statistic, whose p
-value is less than 0.0001. Therefore one may draw the same conclusion with our test. All
the calculations were carried out using the IML/SAS on PC.
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5. Asymptotic properties of the test

In this section, in order to deal with the asymptotic properties of our test, we consider
the location translation model. This means that for each , there is a location translation
parameter δk ∈ R1 such that for all x ∈ R1 ,

Fk(x) = F (x − δk).

First of all, we derive the limiting power of our test under the following Pitman translation
alternatives: For each k and n , let

H1n : δkn = ck/
√

n,

where ck ’s are some fixed real numbers. Also for each n , let

Gn =
K∑

k=1

nk

n
Fk and Ĝn =

K∑
k=1

nk

n
F̂knk

,

where for each k , F̂knk
is the empirical distribution function of Fk based on X∗

k1, . . . , X∗
knk

. Also we assume that ∫ ∞

−∞
f ′(x)dx = 0, (5.1)

where f ′ is the derivative of f and f is the corresponding density function of F . The
assumption (5.1) is known as a regularity assumption on density (cf. Bickel and Doksum,
1977). From now on, we use ∆j ’s instead of ∆nj ’s since we consider obtaining the limiting
power of test for each fixed score function. Then we note that for each k ,

EH1n(Tkn) = nk

d∑
j=1

∆j

(
Ĝn(aj+1) − Ĝn(aj)

)
or

EH1n(Tkn/nk) =
d∑

j=1

∆j

(
Ĝn(aj+1) − Ĝn(aj)

)
.

From Glivenko-Cantelli lemma, we note with probability one that as n → ∞

supj∈{1 ,... ,d}

∣∣∣Ĝn(aj) − Gn(aj)
∣∣∣ → 0.

Also let

µn(δn) =
d∑

j=1

∆j (Gn(aj+1) − Gn(aj)) ,

where δn = (δ1n, . . . , δKn)′ . Then we note that for every k , we have with probability one
that as n → ∞

|EH1n(Tkn/nk) − µn(δn)| → 0.
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Therefore for each k , we may use µn(δn) instead of EH1n(Tkn/nk) for the asymptotic
properties of our test. We note that

Gn(aj+1) − Gn(aj) =
K∑

k=1

nk

n
(Fk(aj+1) − Fk(aj))

=
K∑

k=1

nk

n
(Fk(aj+1 − δk) − Fk(aj − δk)) .

Therefore we have that for each n ,

∂µn(δ)
∂δk

|δk=0 =
nk

n

d∑
j=1

∆j (f(aj) − f(aj+1))

=
nk

n

d∑
j=1

∆j∆∗
j (F (aj+1) − F (aj))

since

∆∗
j =

1
F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ψ(u)du =
f(aj) − f(aj+1)
F (aj+1) − F (aj)

.

Also with the same arguments used for the derivation of the null variance, one can easily
obtain the variance of Tkn under the Pitman translation alternatives as follows: for each k ,

VH1n(Tkn) = nk

n − nk

n − 1


d∑

j=1

∆2
j

(
Ĝn(aj+1) − Ĝn(aj)

)
−

 d∑
j=1

∆j

(
Ĝn(aj+1) − Ĝn(aj)

)2
 .

Then it is easy to see that for each k , as n → ∞ ,

VH1n(Tkn)/V0(Tkn) → 1

from the fact that under the Pitman translation alternatives, with probability one,

Ĝn(aj+1) − Ĝn(aj) → F (aj+1) − F (aj).

Also with the same arguments used for the variances, for any pair k ̸= m ,

CovH1n(Tkn, Tmn)/Cov0(Tkn, Tmn) → 1.

Finally, we have that for each k ,

lim
n→∞

nk(∂µn(δ)/∂δk)|δk=0√
nV0(Tkn)

= λk

√
λk

1 − λk

∑d
j=1 ∆j∆∗

j (F (aj+1) − F (aj))√∑d
j=1 ∆2

j (F (aj+1) − F (aj)) − ∆̄2

= ζk

, say.
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Let Σ1n be the covariance matrix of (T1n, . . . , TKn)′ under the Pitman translation alter-
natives for each n . Then from the above arguments, we see that the asymptotic distribution
of

Mn =

 T1n − EH1n(T1n)
· · ·

TKn − EH1n(TKn)


′

Σ−
1n

 T1n − EH1n(T1n)
· · ·

TKn − EH1n(TKn)


coincides with that of

M∗
n =

 T1n − E0(T1n) + ζ1c1

· · ·
TKn − E0(TKn) + ζKcK


′

Σ−
0n

 T1n − E0(T1n) + ζ1c1

· · ·
TKn − E0(TKn) + ζKcK


whose asymptotic distribution is a non-central chi-square with K−1 degrees of freedom and
non-centrality parameter Θ (cf. Johnson and Katz, 1970), where

Θ =
1
2

 ζ1c1

· · ·
ζKcK


′

Σ−
0

 ζ1c1

· · ·
ζKcK

 . (5.2)

Let qα(K−1) be the upper α -percentile point of the (central) chi-square distribution with
K−1 degrees of freedom. Also let Q(Θ) be a chi-square random variable with K−1 degrees
of freedom and non-centrality parameter Θ . Then the asymptotic power of our proposed
test under the Pitman translation alternatives is

lim
n→∞

Pr
H1n

{M∗
n ≥ qα(K − 1)} = Pr {Q(Θ) ≥ qα(K − 1)} > α,

since Θ > 0 and Pr {Q(Θ) ≥ q} is strictly increasing in Θ for each fixed q .
From now on, we consider the intrinsic loss on efficiency due to grouping (cf. Puri and

Sen, 1985). For this matter, we consider the two-sample case. If we use ∆∗
j instead of ∆j ,

then we obtain that

lim
n→∞

n1µ
′
n(0)√

nV0(Tn)
=

√
λ1λ2

∑d
j=1 ∆∗2

j (F (aj+1) − F (aj))√∑n
j=1 ∆∗2

j (F (aj+1) − F (aj))

=
√

λ1λ2

√√√√ n∑
j=1

∆∗2
j (F (aj+1) − F (aj))

since

∆̄∗ =
d∑

j=1

1
F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ψ(u)du (F (aj+1) − F (aj))

=
d∑

j=1

∫ F (aj+1)

F (aj)

[
−

f ′(F−1(u))
f(F−1(u))

]
du

= −
∫ ∞

−∞
f ′(x)dx

= 0
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using the variable-transformation-technique and from the regularity assumption (5.1). Fur-
thermore if we observe Xki directly not X∗

ki , then we obtain that

lim
n→∞

n1µ
′
n(0)√

nV0(Tn)
=

√
λ1λ2

∫ 1

0
ψ2(u)du√∫ 1

0
ψ2(u)du

=
√

λ1λ2

√∫ 1

0

ψ2(u)du.

The intrinsic loss on efficiency due to grouping, L(G) is defined as

L(G) =

∑d
j=1 ∆∗2

j (F (aj+1) − F (aj))∫ 1

0
ψ2(u)du

.

We note that
√

λ1λ2

√∫ 1

0
ψ2(u)du and

√
λ1λ2

√∑n
j=1 ∆∗2

j (F (aj+1) − F (aj)) are the effi-
cacies of the tests based on the statistic Mn for the grouped and non-grouped data, re-
spectively. Therefore L(G) is the square of the ratio of the efficacy for the grouped data
relative to that of non-grouped data and can not exceed 1. To see this, we note that with
Cauchy-Schwarz inequality (cf. Chung, 1974)

0 <

n∑
j=1

∆∗2
j (F (aj+1) − F (aj))

=
d∑

j=1

[
1

F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ψ(u)du

]2

(F (aj+1) − F (aj))

≤
d∑

j=1

[
1

F (aj+1) − F (aj)

∫ F (aj+1)

F (aj)

ψ2(u)du

]
(F (aj+1) − F (aj))

=
d∑

j=1

∫ F (aj+1)

F (aj)

ψ2(u)du

=
∫ 1

0

ψ2(u)du.

Therefore we obtained that

L(G) =

∑d
j=1 ∆∗2

j (F (aj+1) − F (aj))∫ 1

0
ψ2(u)du

≤ 1.

We note that as maxj (F (aj+1) − F (aj)) → 0 ,

d∑
j=1

∆∗2
j (F (aj+1) − F (aj)) →

∫ 1

0

ψ2(u)du.

Therefore as maxj (F (aj+1) − F (aj)) → 0 , we see that

L(G) → 1.
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We note that the non-centrality parameter (5.2) can be used to obtain the asymptotic
relative efficiency (ARE) of the test based on Mn with other tests, which we want to
compare their performance. Also we note that the ARE will be determined by the patterns
of the partition of the interval as well as the distribution functions.

6. Some concluding remarks

First of all, we discuss briefly to obtain the statistic, KWn and derive the asymptotic
normality for KWn . For the simplicity of our arguments, we only consider the case that
K = 3 . For the extension to the case that K > 3 , nothing new is involved except the
notational complexity. If we express the exponent of a bivariate normal distribution with
any two Tkn and Tmn among three components, T1n , T2n and T3n , we have

−
1

2(1 − ρ2)

[
(Tkn/nk − ∆̄n)2

V0(Tkn/nk)
− 2ρ

Tkn/nk − ∆̄n√
V0(Tkn/nk)

Tmn/nm − ∆̄n√
V0(Tmn/nm)

+
(Tmn/nm − ∆̄n)2

V0(Tmn/nm)

]
,

where

ρ = −

√
nk

n − nk

nm

n − nm
.

Then by multiplying the above exponent by -2 and manipulating the algebraic structure
with the following facts

T1n + T2n + T3n = n∆̄n and n = n1 + n2 + n3,

we obtain (3.2) with 3 in place of K . It is well-known that the exponent of any bivariate
normal distribution multiplied by -2 has a chi-square distribution with 2 degrees of freedom.
Therefore it follows immediately that the asymptotic distribution of KWn is a chi-square
distribution with 2 degrees of freedom when K = 3 . Also we note that we have obtained the
same value for Mn and KWn for the example in the previous section. Therefore one may
conjecture that Mn and KWn are equivalent. From this, our procedure can be considered
as generalization of the Kruskal-Wallis test in the aspects to improve the power of test as
well as to be applied to the grouped data.

We applied the Pearson’s chi-square test as a nonparametric procedure to the example in
order to test H0 : F1 = F2 = F3 and used the table of chi-square distribution with 12 degrees
of freedom. Therefore the asymptotic distribution of the Pearson’s chi- square statistic
depends on the number of the sub-intervals as well as the number of samples. However we
note that the asymptotic distribution of our test statistic is completely independent of the
number of sub-intervals. This may be an advantage of our procedure.

7. Appendix

In this appendix, we derive the expression of Cov0(Tkn, Tmn) , the covariance between the
two components, Tkn and Tmn . For this, we use the permutational arguments. Since

Tkn =
nk∑
i=1

d∑
j=1

∆njZkij =
d∑

j=1

∆nj

nk∑
i=1

Zkij
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we have that for any k ̸= m ,

E0

 d∑
j=1

∆nj

nk∑
i=1

Zkij

(
d∑

g=1

∆ng

nm∑
h=1

Zmhg

)
=

nk∑
i=1

nm∑
h=1

d∑
j=1

d∑
g=1

∆nj∆ngE0(ZkijZmhg)

=
nk∑
i=1

nm∑
h=1

d∑
j=1

∆2
njE0(ZkijZmhj) +

nk∑
i=1

nm∑
h=1

∑∑
j ̸=g

∆nj∆ngE0(ZkijZmhg)

=
nk∑
i=1

nm∑
h=1


d∑

j=1

∆2
nj

n�j
n

n�j − 1
n − 1

 +
nk∑
i=1

nm∑
h=1

{∑∑
j ̸=g

∆nj∆ng

n�j
n

n�m
n − 1

}

= nknm


d∑

j=1

∆2
nj

n�j
n

n�j − 1
n − 1

 + nknm

{∑∑
j ̸=g

∆nj∆ng

n�j
n

n�m
n − 1

}

= nknm

n

n − 1


d∑

j=1

∆2
nj

n�j
n

n�j − 1
n

 + nknm

n

n − 1

{∑∑
j ̸=g

∆nj∆ng

n�j
n

n�m
n

}

= nknm

n

n − 1


d∑

j=1

∆2
nj

n�j
n

n�j − 1
n

 + nknm

n

n − 1




d∑
j=1

∆nj

n�j
n


2

−
d∑

j=1

∆2
nj

(
n�j
n

)2


= nknm

n

n − 1


d∑

j=1

∆2
nj

n�j
n

n�j − 1
n

 + nknm

n

n − 1

∆̄2
n −

d∑
j=1

∆2
nj

(
n�j
n

)2


= nknm

n

n − 1


d∑

j=1

∆2
nj

(
n�j
n

)2

−
d∑

j=1

∆2
nj

n�j
n2

 + nknm

n

n − 1

∆̄2
n −

d∑
j=1

∆2
nj

(
n�j
n

)2


= −
nknm

n − 1

d∑
j=1

∆2
nj

n�j
n

+ nknm

n

n − 1
∆̄2

n.
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Therefore

Cov0(Tkn, Tmn) = E0(TknTmn) − E0(Tkn)E0(Tmn)

= E0

 d∑
j=1

∆nj

nk∑
i=1

Zkij

 (
d∑

g=1

∆ng

nm∑
h=1

Zmhg

)
− E0

 d∑
j=1

∆nj

nk∑
i=1

Zkij

E0

[
d∑

g=1

∆ng

nm∑
h=1

Zmhg

]

= −
nknm

n − 1

d∑
j=1

∆2
nj

n�j
n

+ nknm

n

n − 1
∆̄2

n − nknm∆̄2
n

= −
nknm

n − 1

d∑
j=1

∆2
nj

n�j
n

+
nknm

n − 1
∆̄2

n

= −
nknm

n − 1


d∑

j=1

∆2
nj

n�j
n

− ∆̄2
n

 .
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