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Abstract
In this study, we drive the one dimensional marginal transform function , proba-

bility density function and probability distribution function for the random variables
TξN (Time taken by the servers during the vacations), ξN (Number of vacations taken by
the servers) and ηN ( Number of customers or units arrive in the system) by controlling
the variability of two random variables simultaneously.

Keywords: Erlang process, marginal distributions, markov process, renewal process.

1. Introduction

Uchida and Aki (1995) considered that the recurrence relations of the probability generat-
ing functions (p.g.f.s) of the distributions of the sooner or later waiting time between F0 and
F1 by the non overlapping way of counting and by the overlapping way of counting in the
Markov chain. They also obtained recurrence relations of the p.g.f.s of the distributions of
the sooner or later waiting time by the non overlapping way of counting of ”0” runs length
r or more and ”1” run of length k or more in the Markov chain. The recurrence relations of
the p.g.f.s of the waiting time distributions between F0 and F1 by the non overlapping way
of counting in Markov chain was also discussed by Feller (1968). The recurrence relations of
the p.g.f.s of the sooner and later waiting time distributions between F0 and F1 by the over-
lapping way of counting in Markov chain was extended from the work of ling (1988). The
recurrence relations of the p.g.f.s of the sooner and later waiting time distributions between
F0 and F1 by the non overlapping way of counting of “0” runs of length r or more and ”1”
runs of length k or more in Markov chain was discussed as in Goldstein (1990). Viveros and
Balakrishnan (1993) emphasized on few applications of the geometric distribution of order
k by using Bernoulli trial with common success probability p the geometric distribution of
order k was one of the simplest waiting time distribution. Several waiting time problems
had been studied by many authors Li (1980), Gerber and Li (1981), Ling (1981), Aki (1981),
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Aki and Hirano (1993) and Fu (1986, 1995, 1996), Ebneshahrashoob and Sobel (1990), Aki
(1992), Balasubramanian et al. (1993), Kutras and Papastavirdis (1993), Godbole (1993),
Fu and Kutras (1994), Mohanty (1994).

The purpose was to unify various approaches which have been attempted and to extend
the study of waiting time problems from the first order Markov dependent trial to the second
order Markov dependent trial. The statistical analysis extended the ideas to include waiting
time for the occurrence of events. This is done by replacing the Laplace transform with
MGFs and incorporating probabilities into branches. Thus nodes and branches represented
events and the waiting time for the occurrence of such events. The standard approach to
analyze continuous time Markov chains involved solving the Chapman Kolmogrove equa-
tions for the Laplace transform of the transition probabilities or the probability generating
functions of the process; it is also used by Talpur and Shi (1994). They found the one dimen-
sion marginal distributions of crossing time and renewal numbers related with two poisson
processes, using probability arguments and constructing an absorbing Markov process. In
this study we extend the same technique for the case of two stage Erlang process. The Joint
distribution of the three random variables has been obtained in the Talpur and Iffat (2007).
Here for the same case two-stage Erlang distribution associated with two counting processes,
we obtain the marginal distributions for three random variables.

1.1. Problem description

Searching relevant literature, we found that renewal processes are widely used in reliability
theory and models of queuing theory. The two theories are based on counting processes. It
is in common practice that one has to deal with the situations where the difference between
two or more counting processes is examined. The stochastic processes are found very helpful
in analyzing such type of situations. Kroese (1992) showed the difference of the two counting
processes as

D(t) = N1(t) − N2(t)

Where N1(t) and N2(t) are two counting processes associated with corresponding renewal
sequence of { X i} and { Y j}. The problem considered for this study is extended from
the work of Kroese (1992) and then Talpur and Shi (1994). It is based upon the renewal
sequence of two variables { X i} and { Y j} as shown in the Figure 1.1

Figure 1.1
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Let ξN = min
n→∞

{n/Tn ≥ SN}, where ξN is random variable, N is a constant.
S0 = 0, SN = X1 + X2 + . . .+ X n

T0 = 0, Tn = Y1 + Y2 + . . .+ Y n

TξN
=

ξN∑
j=1

Yj , its taking values are t > 0

and ηN =
∞∑

i=0

Xi, its taking values are i = N, N+1, N+2, . . . . . . .

X represents the inter arrival, Y is the number of vacations performed by the server.
Both variables are discrete having renewal processes at each occurrence. The level of ab-
sorption was achieved at nth arrival of Xn. After nth arrival the nth vacation Yn of the
server would happen. The difference of the time at which the nth vacation happened and
the nth customer arrived is the crossing time of the server. The probability generating func-
tion, Probability density function, Cumulative probability distribution function for the three
random variables, TξN , ξN and ηN is obtained.

1.2. Assumptions

Let N be a constant, { X i} and { Y j} be two sequences of random variables. Suppose
that { X i}, i = 1, 2, 3, . . . ; independently and identically distributed with finite mean λ−1

and{ Y j}, j = 1, 2, 3, . . . ; are independently and identically distributed (i.i.d) with finite
mean µ−1

N1 (t) is the Erlang process associated with { X i} in which the distribution of { X i} is
2-stage Erlang distribution. N2(t) is the Erlang process associated with { Y j } in which
the distribution of {Y j} is 2-stage Erlang distribution.

Xi and Yj are mutually independent.

2. Absorbing Markov process and absorbing time distribution

We consider a Markov process {X(t), t ≥ 0} on the state space E = (0, 1, 2, . . . ;). If E0

and E1are two non null sub set of E and they satisfy;
1) E0 ∩ E 1 = E, E0 ∪ E 1 = ∅, In this case E0, E1 are called a partition of E.
2) E0 is the absorbing state set and E1 is the transient state set.
The absorbing Markov process (A.M.P) is constructed to analyze the problem considering

the AMP {N 1(t), N2(t), I(t), J(t)} in which N1(t), and N2(t) are the counting process
associated with Xi and Yj respectively.

E = { ( i, k, j, l ), (i’, j’)/ i, j = 0, 1, . . . ; k, l = 1, 2; i’ = N’, N’+1’, . . . ;, j’ = 1’, 2’,
. . . ;} , Where (i′, j′) are absorbing states. Transitions of states are shown in the Figure 2.1

Let
Pij (k, l, t) = p{N1 (t) = i,N2 (t) = j, I (t) = k, J (t) = l}
and
Pij (t) = [pij (1, 1, t) , ...pij (1, n, t) , ...pij (m, 1, t) , ...pij (m,n, t)] .

By the transition-rate diagram we can get the system of differential equations as follows
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Figure 2.1 Transition rate diagram

P ′
ij (t) = pij (t)

{
−

{(
λ −λ
0 λ

)
+

(
µ −µ
0 µ

)}}
+ pi−1,j (t)

(
0 0
λ 0

)
+ pij−1 (t)

(
0
µ

)(
1 0

)
, i = 0, 1, ...N − 1; , j = 0, 1, 2, ...;

(2.1)

P ′
ij (t) = pij (t)

{
−

{(
λ −λ
0 λ

)
+

(
µ −µ
0 µ

)}}
+ pi−1j (t)

(
0 0
λ 0

)
, i = N,N + 1, ...; , j = 0, 1, ...;

(2.2)

From these differential difference equations we have obtained the joint distribution for
three random variables in a different paper (2007). The one dimension marginal distributions
for the same case are obtained in this study.

3. Methodology

The one dimensional marginal probability generating functions (probability transform
functions), one dimensional probability density functions and cumulative probability dis-
tribution functions for random variables TξN , ξN and ηN are obtained by controlling the
variability of two random variables simultaneously and find the effect of individual variable
at one time.
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3.1. Probability generating function for TξN

Theorem 3.1 The one dimensional probability transform function of the random variableTξN

is given by

f∗(s) =
(
1 0

){(
s + λ + µ −(λ + µ)

−µ S + λ + µ

)−1 (
0 0
λ 0

)}N (
s + λ + µ −(λ + µ)

−λ s + λ + µ

)−1 (
µ
µ

)
Proof : The one dimensional marginal probability generating function (transform function
) for the random variable TξN

is computed from the joint probability generating function of
three random variables TξN , ξN and ηN see Iffat (2004).

f∗(s, u, z) = u
(
1 0

) {(
s + λ + µ −(λ + µ)

−uµ S + λ + µ

)−1 (
0 0
λz 0

)}N

×
(

s + λ + µ −(λ + µ)
−λz s + λ + µ

)−1 (
µ
µ

)
The effect of number of vacations made by server at service channels and the number of
arriving customers are controlled to get the probability generating effect for the time taken
by the number of vacations made by servers. So let z and u close to 1 to find the one
dimensional marginal probability generating function for the random variable TξN

.

f∗(s) =
(
1 0

){(
s + λ + µ −(λ + µ)

−µ S + λ + µ

)−1 (
0 0
λ 0

)}N

×
(

s + λ + µ −(λ + µ)
−λ s + λ + µ

)−1 (
µ
µ

) (3.1)

Theorem 3.2 The one dimensional marginal probability density function of random vari-
able TξN is given by

p {TξN
≤ t} =

(
N + j − 2

j − 1

)
µjλi

[
(λ + µ)j+i−1

t2j+2i−2

(2j + 2i − 2)!
+

(λ + µ)j+i
t2j+2i−1

(2j + 2i − 1)!

]
e−(λ+µ)t

Proof : The definition of L transform can be expressed by the following equation as shown
by Pipes (1970)

f∗(s) =

∞∫
0

exp(−st)dp {TξN
≤ t} (3.2)

The value of f∗(s) from equation (3.1) is placed in equation (3.2) yields

∞∫
0

exp(−st)dp {TξN ≤ t} =
(
1 0

) {(
s + λ + µ −(λ + µ)

−µ S + λ + µ

)−1 (
0 0
λ 0

)}N

×
(

s + λ + µ −(λ + µ)
−λ s + λ + µ

)−1 (
µ
µ

)
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Let a = s + λ + µ and multiplying and dividing by a we get

f∗(s) =
(
1 0

) {{
I −

(
0 (λ+µ)

a
µ
a 0

)}−1 (
0 0
λ
a 0

)}N
1
a

{
I −

(
0 (λ+µ)

a
λ
a 0

)−1
} (

µ
µ

)
The rule of power series is applied as in Pipes and Harwil (1970) and Talpur and Shi (1994).

f∗(s) =
1
a

(
1 0

){ ∞∑
k=0

(
0 (λ+µ)

a
µ
a 0

)k (
0 0
λ
a 0

)}N { ∞∑
l=0

(
0 (λ+µ)

a
λ
a 0

)l
}(

µ
µ

)
(3.3)

Putting these results of two set of series

{
∞∑

k=0

(
0 (λ+µ)

a
µ
a 0

)k (
0 0
λ
a 0

)}N

and

{
∞∑

l=0

(
0 (λ+µ)

a
λ
a 0

)l
}

is placed in equation (3.3).

f∗(s) =
1
a

(
1 0

)


{
λ
a

∞∑
k=0

(
µ
a

)k
(

λ+µ
a

)k+1
}N

0{
λ
a

∞∑
k=0

(
µ
a

)k
(

λ+µ
a

)k
}N (

λ+µ
a

)N−1

0



×


∞∑

l=0

(
λ
a

)l
(

λ+µ
a

)l ∞∑
l=0

(
λ
a

)l
(

λ+µ
a

)l+1

∞∑
l=0

(
λ
a

)l+1
(

λ+µ
a

)l ∞∑
l=0

(
λ
a

)l
(

λ+µ
a

)l

 (
µ
µ

)

After some algebraic manipulations with the application of the negative binomial distribution
we obtain the following expression, as Bailey (1964).

f∗(s) =
∞∑

k=0

∞∑
l=0

(
N + k − 1

k

)(µ

a

)k+1
(

λ

a

)l+N (
λ + µ

a

)k+l+N {
1 +

(
λ + µ

a

)}
Let j = k + 1 and i = l + N , and substituting the value of a we get

f∗(s) =
∞∑

j=1

∞∑
i=N

(
N + j − 2

j − 1

)(
µ

s + λ + µ

)j (
λ

s + λ + µ

)i

×

{(
λ + µ

s + λ + µ

)j+i−1

+
(

λ + µ

s + λ + µ

)j+i
}

Taking inverse of Laplace transform one can obtain the probability density function for
continuous random variable as performed by Kreyszig (1999).

dp {TξN
≤ t} =

(
N + j − 2

j − 1

)
µjλi(λ + µ)j+i−1t2j+2i−2

(2j + 2i − 2)!
e−(λ+µ)tdt

+
µjλi(λ + µ)j+it2j+2i−1

(2j + 2i − 1)!
e−(λ+µ)tdt
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The one dimension marginal probability density function of random variable TξN
time taken

by vacations of servers is obtained as

p {TξN ≤ t} =
(

N + j − 2
j − 1

)
µjλi

×

[
(λ + µ)j+i−1

t2j+2i−2

(2j + 2i − 2)!
+

(λ + µ)j+i
t2j+2i−1

(2j + 2i − 1)!

]
e−(λ+µ)t

(3.4)

Theorem 3.3 The one dimensional marginal cumulative probability distribution function
of the random variableTξN .

p {TξN ≤ t} =
(

N + j − 2
j − 1

) (
µjλi

(λ + µ)j+i

)

×


(2j+2i−N−1)∑

r=0

[(λ + µ) t]r

r!
+

(2j+2i−N)∑
r=0

[(λ + µ) t]r

r!

 e−(λ+µ)t

(3.5)

Proof : The cumulative probability function can be defined as

p {TξN ≤ t} =

∞∫
t

p {TξN ≤ t}dt

Substituting the value of p {TξN
≤ t} from equation no.(2.1.4) we get

p {TξN ≤ t} =

∞∫
t

(
N + j − 2

j − 1

)
µjλi

[
(λ + µ)j+i−1t2j+2i−2

(2j + 2i − 2)!
+

(λ + µ)j+it2j+2i−1

(2j + 2i − 1)!

]
e−(λ+µ)tdt

Integration by parts is used for finding the cumulative probability distribution function of
time spent in vacations taken by servers as done by Medhi (1982), so the one dimensional
cumulative distribution function for the random variable TξN

is established.

3.2. One dimensional marginal probability distribution functions for ηN

The effect of number of arriving customers represented by ηN is studied by controlling the
time taken by the number of vacations made and the number of vacations made by different
service channels.

Theorem 3.4 The one dimensional probability generating function (probability transform
function) for the random variable ηN is given by

f(z) =
(
1 0

) {(
λ + µ −(λ + µ)
−µ λ + µ

)−1 (
0 0
zλ 0

)}N (
λ + µ −(λ + µ)
−zλ λ + µ

)−1 (
µ
µ

)
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Proof : The one dimensional probability generating function (probability transform func-
tion) for the random variable ηN is obtained from the joint probability generating function
for three random variables TξN

, ξN and ηN see Iffat (2004).

f∗(s, u, z) =u
(
1 0

){(
s + λ + µ −(λ + µ)

−uµ S + λ + µ

)−1 (
0 0
λz 0

)}N

×
(

s + λ + µ −(λ + µ)
−λz s + λ + µ

)−1 (
µ
µ

)
The effect of the time taken by the number of vacations made and that of the random variable
number of vacations made are controlled by putting s and u close to 0 and 1 respectively.
The one dimensional marginal probability generating function is computed as

f(z) =
(
1 0

) {(
λ + µ −(λ + µ)
−µ λ + µ

)−1 (
0 0
zλ 0

)}N (
λ + µ −(λ + µ)
−zλ λ + µ

)−1 (
µ
µ

)
(3.6)

Theorem 3.5 The one dimensional probability density function for the random variable
ηN is given by

p {ηN = i} =
∞∑

j=1

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

Proof : The definition of z transform can be expressed by the following equation as given
by Talpur and Shi (1994).

f(z) =
∞∑

i=N

p {ηN = i}zi

So by putting the value of f(z) from the equation No. (3.6) we yields

∞∑
i=N

p {ηN = i}zi =
(
1 0

) {(
λ + µ −(λ + µ)
−µ λ + µ

)−1 (
0 0
zλ 0

)}N (
λ + µ −(λ + µ)
−zλ λ + µ

)−1 (
µ
µ

)
Let a = λ + µ, and dividing by a one can get

f(z) =
(
1 0

){(
1 −1

−µ
a 1

)−1 (
0 0
λz
a 0

)}N
1
a

(
1 −1

− zλ
a 1

)−1 (
µ
µ

)

=
(
1 0

){
I −

(
0 1
µ
a 0

)−1 (
0 0
λz
a 0

)}N
1
a

{
I −

(
0 1
zλ
a 0

)−1
} (

µ
µ

)
The rule of geometric series is applied as expressed by Saaty (1961).

f(z) =
(
1 0

){ ∞∑
k=0

(
0 1
µ
a 0

)k (
0 0
λz
a 0

)}N
1
a

{ ∞∑
l=0

(
0 1
zλ
a 0

)l
}(

µ
µ

)
(3.7)
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The results of two set of series

{
∞∑

k=0

(
0 1
µ
a 0

)k (
0 0
λz
a 0

)}N

and

{
∞∑

l=0

(
0 1
zλ
a 0

)l
}

is placed in

equation (3.7) and after some simplification we gets

f(z) =
1
a

{
λz

a

∞∑
k=0

(µ

a

)k
}N {

µ
∞∑

l=0

(
λz

a

)l

+ µ
∞∑

l=0

(
λz

a

)l
}

Using applications of the negative binomial distribution as Hogg and Craig (1995) one can
obtained.

f(z) =
∞∑

k=0

∞∑
l=0

(
N + k − 1

k

)
2

(µ

a

)k+1
(

λ

a

)l+N

zl+N

By taking j = k + 1 and i = l + N , and substituting the value of a and comparing the
coefficient of z we yields

p {ηN = i} =
∞∑

j=1

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

(3.8)

This is looks like as a negative binomial distribution, which is the convolution of the geo-
metric distribution as expressed by Feller (1970). The vacation of the servers will vanish at
this stage, as the crossing time is attained by reaching the absorbing state.

Theorem 3.6 The one dimensional cumulative probability distribution function for the
random variable ηN is given by

p {ηN = i} =
∞∑

j=1

∞∑
i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

(3.9)

Proof : The one dimensional cumulative probability distribution function for random vari-
able ηN is obtained by summing the one dimensional marginal probability density function
for the discrete random variable ηN the number of arriving customers from equation (3.8)
the proof is obvious.

The cdf for the number of customers arrived act as negative binomial distribution, where
the number of vacations considered until crossing time for having the absorbing state and
the number of customers are taken after the achievement of absorption state.

3.3. One dimensional marginal probability distribution functions for ξN

The effect of number of vacations made by service channels represented by ξN is studied
by controlling the time taken by the number of vacations made and the number of arriving
customers or units. The one dimensional marginal probability generating function (prob-
ability transform function), density function and cumulative distribution function for the
random variable ξN .

Theorem 3.7 The one dimensional marginal probability generating function (probability
transform function) for the random variable ξN is given by

f (u) = u
(
1 0

){(
λ + µ −(λ + µ)
−uµ λ + µ

)−1 (
0 0
λ 0

)}N (
λ + µ −(λ + µ)
−λ λ + µ

)−1 (
µ
µ

)
(3.10)
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Proof : The one dimensional probability generating function for the random variable ξN is
obtained from the joint probability generating function for three random variables TξN , ξN

and ηN see Iffat (2004).

f∗(s, u, z) =u
(
1 0

){(
s + λ + µ −(λ + µ)

−uµ S + λ + µ

)−1 (
0 0
λz 0

)}N

×
(

s + λ + µ −(λ + µ)
−λz s + λ + µ

)−1 (
µ
µ

)
The effect of the random variable TξN

time taken by the number of vacations made and that
of the random variable ηN number of customers arrived are controlled by putting s and z
close to 0 and 1 respectively the proof is obvious.

Theorem 3.8 The one dimensional marginal probability density function (pdf) for the
random variable ξN is given by

p {ξN = j} =
∞∑

i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

Proof : The definition of z transform can be expressed by the following equation as given
by Talpur and Shi (1994).

f(u) =
∞∑

j=1

p {ξN = j}uj

So by putting the value of f(u) from equation (3.10)

f(u) =
∞∑

j=1

p {ξN = j}uj

= u
(
1 0

){(
λ + µ −(λ + µ)
−uµ λ + µ

)−1 (
0 0
λ 0

)}N (
λ + µ −(λ + µ)
−λ λ + µ

)−1 (
µ
µ

)
Taking a = s + λ + µ, and dividing by a one can get

f(u) =
u

a

(
1 0

) {
I −

(
0 1
uµ
a 0

)−1 (
0 0
λ
a 0

)}N {
I −

(
0 1
λ
a 0

)−1
}(

µ
µ

)
Applying rule of the geometric series it can be expressed as

f(u) =
u

a

(
1 0

){ ∞∑
k=0

(
0 1
uµ
a 0

)k (
0 0
λ
a 0

)}N { ∞∑
l=0

(
0 1
λ
a 0

)l
} (

µ
µ

)
By simplifying this and applying negative binomial distribution as done by Saaty (1961),
Hogg and Craig (1995) we get

f(u) =
∞∑

k=0

∞∑
l=0

(
N + k − 1

k

)
2

(µ

a

)k+1
(

λ

a

)l+N

uk+1
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By putting j = k + 1 and i = l + N and substituting the value of aand comparing the
coefficient of u we obtained the proof.

p {ξN = j} =
∞∑

i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

(3.11)

The pdf for the discrete random variable of the number of vacations performed by service
channels until having the absorbing state is expressed as a negative binomial distribution.

Theorem 3.9 The one dimensional marginal cumulative probability distribution function
for the random variable ξN is given by

p {ξN = j} =
∞∑

j=1

∞∑
i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

Proof : The one dimensional cumulative probability distribution function for random vari-
able ξN is obtained by summing the one dimensional marginal probability density function
for the discrete random variable ξN the number of vacations made by service channels from
equation (3.11).

p {ξN = j} =
∞∑

i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

The one dimensional cumulative probability distribution function (cdf) for the random vari-
able ξN .

p {ξN = j} =
∞∑

j=1

∞∑
i=N

(
N + j − 2

j − 1

)
2

(
µ

λ + µ

)j (
λ

λ + µ

)i

(3.12)

The cdf for the number of vacations customers arrived accomplishes the negative binomial
distribution, where the observed number of vacations made by service channels is related
to the crossing time for having the absorption state and the number of customers is taken
after the achievement of absorption state.

4. Results and discussion

Above theorems show that the probability density functions are related to discrete random
variables and could be linked to the Poisson process as shown by Medhi (1982). The crossing
time shows the two stage Erlang distribution, the number of vacations related to crossing
time follows the negative binomial distribution and the number of arrivals for the absorption
state also satisfies the negative binomial distribution.
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