광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis

  • 발행 : 2009.02.28

초록

광양만 조간대 갯벌에 서식하는 저서미세조류와 해수 중 식물플랑크톤의 생체량과 군집조성의 계절변동 양상을 밝히기 위하여, 2002년 1월부터 11월까지 매월 high-performance liquid chromatograph(HPLC)를 이용한 광합성색소(photosynthetic pigments) 분석을 실시하였다. 광합성색소 분석결과 규조류(diatoms)의 주요 지표색소인 fucoxanthin, diadinoxanthin 그리고 diatoxanthin이 퇴적물과 상부 해수에서 연중 우점하여 나타났다. 이들을 제외한 다른 색소들은 상대적으로 낮은 농도를 보였다. 깊이 0.5 cm까지의 표층퇴적물에서 측정한 chlorophyll ${\alpha}$ 농도는 3.44${\sim}$169 mg $m^{-2}$의 범위로 연평균 농도는 상부, 중부 그리고 하부 갯벌 퇴적물에서 각각 $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$로 나타났다. 반면 퇴적물 상부 수주 전체 수심(2.6 m)에 대해 적산한 chlorophyll ${\alpha}$ 농도는 1.66(11월)${\sim}$11.7(7월) mg $m^{-2}$의 농도 범위로 평균 $6.96{\pm}3.04mg\;m^{-2}$를 나타내었다. 이로부터 갯벌 퇴적물 내에 존재하는 저서미세조류의 농도는 해수 중 존재하는 식물플랑크톤의 농도보다 3${\sim}$10배 정도 높은 것으로 추산되었다. 퇴적물과 상부 해수 중 미세조류의 농도에서 유사한 월별변화와 군집조성은 재부유된 저서미세조류가 광양만 해수 중 식물플랑크톤 생체량의 상당부분을 설명할 수 있음을 시사하였다. 따라서 이들 저서미세조류는 갯벌 생물뿐만 아니라 재부유에 의한 수송을 통하여 인근 연안 생태계의 생물군에 대한 중요한 영양원 역할을 할 수 있다는 점에서 이들의 거동에 대한 지속적인 관찰이 요구된다.

Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

키워드

참고문헌

  1. Barranguet, C., J. Kromkamp and J. Peene, 1998. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos. Mar. Ecol. Prog. Ser., 173: 117−126 https://doi.org/10.3354/meps173117
  2. Bianchi, T.S., S. Findlay and R. Dawson, 1993. Organic matter sources in the water column and sediments of the Hudson River estuary: the use of plant pigments as tracers. Estuar. Coast. Shelf Sci., 36: 359−376 https://doi.org/10.1006/ecss.1993.1022
  3. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923−937 https://doi.org/10.1016/0198-0149(86)90007-5
  4. Brunet, C., J.M. Brylinski and Y. Lemoine, 1993. In situ variations of the xanthophylls diatoxanthin and diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the eastern English Channel. Mar. Ecol. Prog. Ser., 102: 69−77 https://doi.org/10.3354/meps102069
  5. Burkill, P.H., R.F.C. Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581−590 https://doi.org/10.1007/BF00392796
  6. Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res., 8: 260−291 https://doi.org/10.1016/0077-7579(74)90020-9
  7. Colijn, F., 1982. Light absorption in the waters of the Ems-Dollard Estuary and its consequences for the growth of phytoplankton and microphytobenthos. Neth. J. Sea Res., 15: 196−216 https://doi.org/10.1016/0077-7579(82)90004-7
  8. Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser., 14: 185−196 https://doi.org/10.3354/meps014185
  9. de Jong, D.J. and V.N. de Jonge, 1995. Dynamics and distribution of microphytobenthic chlorophyll-a in the Western Scheldt estuary (SW Netherlands). Hydrobiol., 311: 21−30 https://doi.org/10.1007/BF00008568
  10. de Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185−196 https://doi.org/10.3354/meps104185
  11. de Jonge, V.N. and J.E.E. van Beusekom, 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems Estuary and its possible role for grazers. Neth. J. Sea Res., 30: 91−105 https://doi.org/10.1016/0077-7579(92)90049-K
  12. Delgado, M., V.N. de Jonge and H. Peletier, 1991. Experiments on resuspension of natural microphytobenthos populations. Mar. Biol., 108: 321−328 https://doi.org/10.1007/BF01344347
  13. Demers, S., S. Roy, R. Gagnon and C. Vignault, 1991. Rapid lightinduced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76: 185−193 https://doi.org/10.3354/meps076185
  14. Du, G. and I.K. Chung, 2007. Spatio-temporal variation of intertidal microphytobenthos in the Nakdong Estuary. J. Korean Soc. Oceanogr., 12: 186−190
  15. Guarini, J.M., G.F. Blanchard, C. Bacher, P. Gros, P. Riera, P. Richard, D. Gouleau, R. Galois, J. Prou and P.G. Sauriau, 1998. Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Ol$\'{e}$ron Bay (France). Mar. Ecol. Prog. Ser., 166: 131−141 https://doi.org/10.3354/meps166131
  16. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes and J.D.H. Strickland, 1965. Fluorimetric determination of chlorophyll. J. Cons. perm. int. Explor. Mer., 30: 3−15 https://doi.org/10.1093/icesjms/30.1.3
  17. Hyun, S., W.H. Paeng and T. Lee, 2004. Characteristics of surficial sediment and benthic environments based on geochemical data in Gwangyang Bay, Korea. Korean J. Environ. Biol., 22: 93−102
  18. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong, 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79−92 https://doi.org/10.3354/meps259079
  19. Kang, C.K., Y.W. Lee, E.J. Choy, J.K. Shin, I.S. Seo and J.S. Hong, 2006. Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Mar. Ecol. Prog. Ser., 315: 113−127 https://doi.org/10.3354/meps315113
  20. Levinton, J.S. and M. McCartney, 1991. Use of photosynthetic pigments in sediments as a tracer for sources and fates of macrophyte organic matter. Mar. Ecol. Prog. Ser., 78: 87−96 https://doi.org/10.3354/meps078087
  21. Lorenzen, C.L., 1967. Determination of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnol. Oceanogr., 12: 343−346 https://doi.org/10.4319/lo.1967.12.2.0343
  22. Lucas, C.H., J. Widdows, M.D. Brinsley, P.N. Salkeld and P.M.J. Herman, 2000. Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Mar. Ecol. Prog. Ser., 196: 59−73 https://doi.org/10.3354/meps196059
  23. MacIntyre, H.L. and J.J. Cullen, 1995. Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthos. Mar. Ecol. Prog. Ser., 122: 227−237 https://doi.org/10.3354/meps122227
  24. MacIntyre, H.L., R.J. Geider and D.G. Miller, 1996. Microphytobenthos: the ecological role of the “Secret Garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries and Coasts, 19: 186−201 https://doi.org/10.2307/1352224
  25. Meadows, P.S. and J.G. Anderson, 1968. Micro-organisms attached to marine sand grains. J. mar. biol. Ass. U.K., 48: 161−175 https://doi.org/10.1017/S0025315400032501
  26. Meleder V., L. Barille, Y. Rince, M. Morancais, P. Rosa and P. Gaudin, 2005. Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France). Mar. Ecol. Prog. Ser., 297: 83−99 https://doi.org/10.3354/meps297083
  27. Moline, M.A., 1998. Photoadaptive response during the development of a coastal Antarctic diatom bloom and relationship to water column stability. Limnol. Oceanogr., 43: 146−153 https://doi.org/10.4319/lo.1998.43.1.0146
  28. Montagna, P.A., G.F. Blanchard and A. Dinet, 1995. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J. Exp. Mar. Biol. Ecol., 185: 149−165 https://doi.org/10.1016/0022-0981(94)00138-4
  29. Montani, S., P. Magni and N. Abe, 2003. Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Mar. Ecol. Prog. Ser., 249: 79−91 https://doi.org/10.3354/meps249079
  30. Oh, S.J., C.H. Moon and M.O. Park, 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Kor. Fish. Soc., 37: 215−225
  31. Park, M.O., C.H. Moon, H.S. Yang and J.S. Park, 1999. Distribution of phytoplankton pigments in the Korea Strait. J. Oceanol. Soc. Korea, 34: 95−112
  32. Park, M.O. and J.S. Park, 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J. Oceanol. Soc. Korea, 32: 46−55
  33. Paterson, D.M., 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr., 34: 223−234 https://doi.org/10.4319/lo.1989.34.1.0223
  34. Sundback, K., V. Enoksson, W. Graneli and K. Pettersson, 1991. Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous- flow study. Mar. Ecol. Prog. Ser., 74: 263−279 https://doi.org/10.3354/meps074263
  35. Therriault, J.C., D. Booth, L. Legendre and S. Demers, 1990. Phytoplankton photoadaptation to vertical excursion as estimated by an in vivo fluorescence ratio. Mar. Ecol. Prog. Ser., 60: 97−111 https://doi.org/10.3354/meps060097
  36. Trees, C.C., M.C. Kennicutt II and J.M. Brooks, 1985. Errors associated with the standard fluorimetric determination of chlorophylls and phaeopigments. Mar. Chem., 17: 1−12 https://doi.org/10.1016/0304-4203(85)90032-5
  37. Welschmeyer, N.A. and N. Hoepffner, 1986. Rapid xanthophyll cycling: an in situ tracer for mixing in the upper ocean. EOS (Trans. Am. Geophys. Un.), 67: 969
  38. Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Oceanogr., 10: 8−18
  39. Young, A.J. and H.A. Frank, 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B: Biol., 36: 3−15 https://doi.org/10.1016/S1011-1344(96)07397-6