A STUDY ON THE EFFECT OF POLYMERIZATION SHRINKAGE OF SEVERAL COMPOSITE RESIN USING STRAIN GAUGE

스트레인 게이지를 이용한 수종 수복재의 중합수축 영향 평가

  • Lee, In-Cheon (Dankook University, School of Dentistry, Department of Pediatric Dentistry) ;
  • Kim, Jong-Soo (Dankook University, School of Dentistry, Department of Pediatric Dentistry) ;
  • Yoo, Seung-Hoon (Dankook University, School of Dentistry, Department of Pediatric Dentistry)
  • 이인천 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 유승훈 (단국대학교 치과대학 소아치과학교실)
  • Published : 2009.02.27

Abstract

This study was performed to evaluate the effect of the shrinkage stress induced by polymerization process of several light curing filling materials according to filling methods. High power light curing unit which has a plasma arc lamp was used and filling materials used were Filtek $Z-250^{(R)}$ composite resin, $Dyract^{(R)}$ AP compomer and $Tetric^{(R)}$ Flow flowable composite resin. Cavities were prepared on the permanent molars with width 3 mm, height 3 mm and depth 1.5 mm and the filling materials were filled with 1 step, 2 step layering technique and 3 step oblique filling methods. The results can be summarized as follows; 1. Strain values showed rapid increase from the start of light curing followed by gradual decrease afterwards with time. 2. Although the shrinkage stress value of $Z-250^{(R)}$ were shown to be relatively higher than $Dyract^{(R)}$ AP and $Tetric^{(R)}$ Flow, no statistically significant could be found between tested materials(p>0.05). 3. There were no statistically significant difference between 3 filling methods when using $Dyract^{(R)}$ AP and $Z-250^{(R)}$(p>0.05). 4. There were no statistically significant difference between shrinkage stress values obtained from samples prepared by different filling methods and materials(p>0.05).

본 연구는 광중합 충전 재료의 적층 방법에 따른 중합수축 양상을 스트레인 게이지를 이용하여 측정하고, 이를 응력으로 환산하여 치면에 미치는 영향을 평가하였다. 발거된 영구치 70개의 치경부에 가로 3 mm, 세로 3 mm, 높이 1.5 mm의 와동을 형성하고, 일회 충전, 수평 적층법, 사면적층법으로 나누어 수복 재료를 충전하였다. Plasma arc lamp(PAL)를 사용한 고출력 광중합기를 광원으로 사용하였으며, 수복 재료는 Filtek $Z-250^{(R)}$ 복합레진, $Dyract^{(R)}$ AP 컴포머 그리고 $Tetric^{(R)}$ Flow 유동성 복합레진을 사용하였다. 중합과정동안 스트레인 게이지를 이용하여 치면에 발생된 스트레인을 측정하였고, 이를 응력으로 환산하여 다음과 같은 결론을 얻었다. 1. Strain 값은 광중합 개시와 함께 급격히 증가하였으며, 시간이 지남에 따라 서서히 감소하는 양상을 보여 주었다. 2. $Z-250^{(R)}$의 수축응력이 $Dyract^{(R)}$ AP와 $Tetric^{(R)}$ Flow에 비해 상대적으로 높게 나타났으나 통계학적 유의차는 없었다(p>0.05). 3. $Z-250^{(R)}$$Dyract^{(R)}$ AP에서 3가지 와동 충전 방법 간에는 수축응력의 차이가 없었다(p>0.05). 4. 와동 충전 방법에 따른 충전 재료 간에도 수축응력의 유의차는 없었다(p>0.05). 이상의 결과를 종합해보면 $Dyract^{(R)}$ AP는 광중합 과정과 자가 중합 과정이 함께 일어남으로 인해 $Z-250^{(R)}$보다 상대적으로 중합 수축이 적게 나타난 것으로 판단되었다. $Tetric^{(R)}$ Flow는 한 번에 충전을 완료할 수가 있어 시간 소모가 적고 치질에 대한 중합수축력도 적어 유치 와동 충전 시 유용한 충전 방법이라고 판단되었다. 향후 와동 충전 방법의 방향과 광중합 시간 간격이 광중합수축에 미치는 영향 등에 대한 추가 연구가 필요하다고 사료되었다.

Keywords

References

  1. Hegdahl T, Gjerdet NR: Contraction stresses of composite resin filling materials. Acta Odontol Scand, 35:191-195, 1977. https://doi.org/10.3109/00016357709004654
  2. Bowen RL, Rapson JE, Dickson G: Hardening shrinkage and hygroscopic expansion of composite resins. J Dent Res, 61:654-658, 1982. https://doi.org/10.1177/00220345820610050701
  3. Hansen EK: Visible light-cured composite resins: polymerization contraction, contraction pattern and hygroscopic expansion. Scand J Dent Res, 90:329-335, 1982.
  4. Bowen RL, Nemoto K, Rapson JE: Adhesive bonding of various materials to hard tooth tissues: forces developing in composite materials during hardening. J Am Dent Assoc, 106:475-477, 1983.
  5. Goldman M: Polymerization shrinkage of resinbased restorative materials. Aust Dent J, 28:156-161, 1983. https://doi.org/10.1111/j.1834-7819.1983.tb05272.x
  6. Davidson CL, De Gee AJ: Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res, 63:146-148, 1984. https://doi.org/10.1177/00220345840630021001
  7. Feilzer AJ, De Gee AJ, Davidson CL: Setting stress in composite resin in relation to configuration of the restoration. J Dent Res, 66:1636-1639, 1987. https://doi.org/10.1177/00220345870660110601
  8. Feilzer AJ, De Gee AJ, Davidson CL: Curing contraction of composites and glass-ionomer cements. J Prosthet Dent, 59:297-300, 1988. https://doi.org/10.1016/0022-3913(88)90176-X
  9. Rees JS, Jacobsen PH: The polymerization shrinkage of composite resins. Dent Mater, 5:41-44, 1989. https://doi.org/10.1016/0109-5641(89)90092-4
  10. De Gee AF, Feilzer AJ, Davidson CL: True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater, 9:11-14, 1993. https://doi.org/10.1016/0109-5641(93)90097-A
  11. Cook WD, Forrest M, Goodwin AA: A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater, 15:447-449, 1999. https://doi.org/10.1016/S0109-5641(99)00073-1
  12. Peutzfeldt A, Sahafi A, Asmussen E: Character-iza tion of resin composites polymerized with plasma arc curing units. Dent Mater, 16:330-336, 2000. https://doi.org/10.1016/S0109-5641(00)00025-7
  13. Bausch JR, de Lange K, Davidson CL, et al.: Clinical significance of polymerization shrinkage of composite resins. J Prosthet Dent, 48:59-67, 1982. https://doi.org/10.1016/0022-3913(82)90048-8
  14. Yap AU, Soh MS: Post-gel polymerization contraction of "low shrinkage" composite restoratives. Oper Dent, 29:182-187, 2004.
  15. Kleverlaan CJ, Feilzer AJ: Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater, 21:1150-1157, 2005. https://doi.org/10.1016/j.dental.2005.02.004
  16. Ilie N, Kunzelmann KH, Hickel R: Evaluation of micro-tensile bond strengths of composite materials in comparison to their polymerization shrinkage. Dent Mater, 22:593-601, 2006. https://doi.org/10.1016/j.dental.2005.05.014
  17. Donly KJ, Dowell A, Anixiadas C, et al. : Relationship among visible light source, composite resin polymerization shrinkage, and hygroscopic expansion. Quintessence Int, 21:883-886, 1990.
  18. Cook WD, Forrest M, Goodwin AA : A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater, 15:447-449, 1999. https://doi.org/10.1016/S0109-5641(99)00073-1
  19. Davidson CL, Feilzer AJ : Polymerization shrinkage and polymerization shrinkage stress in polymerbased restoratives. J Dent, 25:435-440, 1997. https://doi.org/10.1016/S0300-5712(96)00063-2
  20. Suliman AH, Boyer DB, Lakes RS : Polymerization shrinkage of composite resins : comparison with tooth deformation. J Prosthet Dent, 71:7-12, 1994. https://doi.org/10.1016/0022-3913(94)90247-X
  21. Kleverlaan CJ, Feilzer AJ : Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater, 21:1150-1157, 2005. https://doi.org/10.1016/j.dental.2005.02.004
  22. Hofmann N, Markert T, Hugo B, et al. : Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage. Am J Dent, 16:421-430, 2003.
  23. Fleming GJ, Khan S, Afzal O, et al.: Investigation of polymerisation shrinkage strain, associated cuspal movement and microleakage of MOD cavities restored incrementally with resin-based composite using an LED light curing unit. J Dent, 35:97-103, 2007. https://doi.org/10.1016/j.jdent.2006.05.003
  24. Tolidis K, Nobecourt A, Randall RC : Effect of a resin-modified glass ionomer liner on volumetric polymerization shrinkage of various composites. Dent Mater, 14:417-423, 1998. https://doi.org/10.1016/S0300-5712(99)00016-0
  25. Labella R, Lambrechts P, Van Meerbeek B, et al. : Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater, 15:128-137, 1999. https://doi.org/10.1016/S0109-5641(99)00022-6
  26. Hofmann N, Denner W, Hugo B, et al. : The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent, 31:383-393, 2003. https://doi.org/10.1016/S0300-5712(03)00089-7
  27. Knezevic A, Demoli N, Tarle Z, et al. : Measurement of linear polymerization contraction using digital laser interferometry. Oper Dent, 30:346-352, 2005.
  28. Fogleman EA, Kelly MT, Grubbs WT : Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dent Mater, 18:324-330, 2002. https://doi.org/10.1016/S0109-5641(01)00057-4
  29. Calheiros FC, Sadek FT, Braga RR, et al. : Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in class V restorations. J Dent, 32:407-412, 2004. https://doi.org/10.1016/j.jdent.2004.01.014
  30. Tani Y, Nambu T, Ishikawa A, et al. : Polymer-ization shrinkage and contraction force of composite resin restorative inserted with "Megafiller". Dent Mater J, 12:182-189, 1993. https://doi.org/10.4012/dmj.12.182
  31. Yap AUJ, Wang HB, Siow KS, et al. : Polymer-ization shrinkage of visible-light-cured composites. Oper Dent, 25:98-103, 2000.
  32. Sakaguchi RL, Douglas WH : Strain gauge measurement of polymerization shrinkage. J Dent Res 68 : 977(abstr. 885), 1989.
  33. Sakaguchi RL, Sasik CT, Bunczak MA, et al. : Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent 19:312-316, 1991. https://doi.org/10.1016/0300-5712(91)90081-9
  34. Sakaguchi RL, Peters MCRB, Nelson SR, et al. : Effect of polymerization contraction in composite restorations. J Dent 20:178-182, 1992. https://doi.org/10.1016/0300-5712(92)90133-W
  35. Sakaguchi RL, Ferracane JL : Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dent Mater, 14:106-111, 1998. https://doi.org/10.1016/S0109-5641(98)00016-5
  36. 김윤철, 김종수, 권순원 등 : 스트레인 게이지법을 이용한 복합레진과 컴포머의 중합수축 평가에 관한 연구. 대한소아치과학회지. 29:19-29, 2002.
  37. 김영광, 김종수, 유승훈 : 스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교. 대한소아치과학회지. 31(3):516-526, 2004.
  38. Figueiredo Reis A, Giannini M, Ambrosano GM, et al. : The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J Dent, 31:59-66, 2003. https://doi.org/10.1016/S0300-5712(02)00122-7
  39. Santos AJ, Sarmento CF, Abuabara A, et al. : Stepcure polymerization: effect of initial light intensity on resin/dentin bond strength in class I cavities. Oper Dent, 31:324-331, 2006. https://doi.org/10.2341/05-37
  40. He Z, Shimada Y, Tagami J: The effects of cavity size and incremental technique on micro-tensile bond strength of resin composite in Class I cavities. Dent Mater, 23:533-538, 2007. https://doi.org/10.1016/j.dental.2006.03.012
  41. Versluis A, Douglas WH, Cross M, et al. : Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res, 75:871-878, 1996. https://doi.org/10.1177/00220345960750030301
  42. Koran P, Kurschner R : Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am J Dent, 11:17-22, 1998.
  43. Hirabayashi S, Hood JA, Hirasawa T : The extent of polymerization of Class II light-cured composite resin restorations; effects of incremental placement technique, exposure time and heating for resin inlays. Dent Mater J, 12:159-170, 1993. https://doi.org/10.4012/dmj.12.159
  44. Deliperi S, Bardwell DN : An alternative method to reduce polymerization shrinkage in direct posterior composite restorations. J Am Dent Assoc, 133:1387-1398, 2002.
  45. Mahoney E, Holt A, Swain M, et al. : The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent, 28:589-594, 2000. https://doi.org/10.1016/S0300-5712(00)00043-9
  46. Rees JS, Jacobsen PH : The current status of composite materials and adhesive systems. 6. Clinical techniques for indirect placement. Restor Dent, 6 : 21, 1990.
  47. Darhishyre PA, Messer LB, Douglas WH : Microleakage in class II composite restorations bonded to dentin using thermal and load cycling. J Dent Res, 67:585-587, 1988. https://doi.org/10.1177/00220345880670031201
  48. Lutz F, Krejci I, Luescher B, et al. : Improved proximal margin adaptation of Class II composite resin restorations by use of light-reflecting wedges. Quintessence Int, 17 : 659-664, 1986.
  49. Seghi RR, Gritz MD, Kim J : Calorimetric changes in composites resulting from visible-light-initiated polymerization. Dent Mat, 6 : 133-137, 1990. https://doi.org/10.1016/S0109-5641(05)80044-2
  50. Caughman WF, Caughman GB, Shiflett RA, et al. : Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials, 12:737-740, 1991. https://doi.org/10.1016/0142-9612(91)90022-3
  51. Maffezzoli A, Pietra AD, Rengo S, et al. : Photopolymerization of dental composite matrices. Biomaterials, 15:1221-1228, 1994. https://doi.org/10.1016/0142-9612(94)90273-9
  52. Feilzer AJ, De Gee AJ, Davidson CL : Relaxation of polymerization contraction shear stress by hygroscopic expansion. J Dent Res, 69:36-39, 1990. https://doi.org/10.1177/00220345900690010501