Changes in Benzo(a)pyrene Content During Processing of Corn Oil

옥수수 기름의 제조공정별 벤조피렌 함량 변화

  • Kim, Duk-Sook (Department of Food Science and Technology, Seoil College) ;
  • Lee, Keun-Bo (Department of Food Science and Technology, Seoil College)
  • Published : 2009.02.28

Abstract

Benzo(a)pyrene[B(a)P] levels were determined in processed oils and by-products of corn oil, and removal protocol was formulated. The cause of high level B(a)P contents in corn oil was established. Corn germ had a B(a)P level more than 80% that of whole corn. B(a)P content in final deodorized corn oil was $2.15{\mu}g/kg$, after the usual refining process. B(a)P contents less than $2.0{\mu}g/kg$ could not be attained by routine refining process. However, deodorized corn oil, with B(a)P level of $0.09{\mu}g/kg$, could be prepared by treatment of oil with approximately 2% (w/w) mixed granules(acidic clay:active carbon= 90:10[w/w]). The optimal amount of active carbon was 10% (w/w) that of acidic clay;higher levels of active carbon was not required. The optimal particle size of active carbon was $50{\sim}100$ mesh, removal of B(a)P from bleached corn oil was efficient at this mesh size.

옥수수기름의 제조공정 단계별 공정유 및 이 과정에서 발생되는 부산물에 함유되어 있는 B(a)P 함량을 측정하고 이의 제거방안에 대하여 연구하였다. 옥수수기름에서 높은 수준의 B(a)P가 검출되는 원인은 옥수수에 함유되어 있는 B(a)P의 80% 이상이 옥수수 배아에 집중적으로 분포하는데 따른 현상이었다. 이로부터 얻어진 원유를 일반적인 정제공정을 거칠 경우 최종 탈취유에서는 $2.15{\mu}g$/kg가 검출 되었다. 따라서, 옥수수기름에서 일반적인 정제공정에 의해서는 현행 우리나라의 식용유 중 B(a)P 함유량 $2.0{\mu}g$/kg 이하의 법적 규격을 충족시키기 어려움을 쉽게 알 수 있었다. 이에 탈색공정에서 사용하는 2%(w/w) 내외의 산성백토 대신 산성백토:활성탄소=90:10(w/w)의 혼합분을 처리하여 $0.09{\mu}g$/kg 수준의 탈취유를 얻을 수 있었다. 이 때, 활성탄소의 처리량은 산성백토 대비 10% (w/w) 수준이 적정하였으며, 이의 증가에 따른 B(a)P 제거율 증가는 기대하기 어려웠다. 처리하는 활성탄소의 입도가 B(a)P 제거에 미치는 영향이 컸는데, $50{\sim}100$ mesh 수준의 입도를 갖는 것이 최적의 조건임을 확인하였다.

Keywords

References

  1. Tilgner, D.J. and Daun, H. (1969) Polycyclic aromatic hydrocarbons in smoked foods. Residue Rev., 27, 19-41
  2. Gunther, F.A. and Buzzetti, F. (1965) Occurrence, isolation and identification of polynuclear hydrocarbons as residues. Residue Rev., 23, 90-113
  3. Shubik, P. and Hartwell, J.L. (1957) Survey of compounds which have been tested for carcinogenic activity. Publ. No. 149, US Public Health Service, Washington, DC
  4. Tilgner, D.J. (1970) Food in a carcinogenic environment. Food Manuf., 87, 47-50
  5. Aaenni, E.D. and Fischbach, H. (1972) Trace polycyclic aromatic hydrocarbons analysis, the contribution of chemistry to food supplies. IUPAC, Butterworth, London, 209-215
  6. U.S. EPA METHOD (1999) 610-Polycyclic Aromatic Hydrocarbons : Methods for organic chemical analysis of municipal and industrial waste water
  7. Kwon, K.S., Kim, M.H., Hur, S.J., Park, H.R., Kim, K.J., Ryeom, T.K., Ha, J., Oh, N.S. and Choi, K.S. (2004) Levels of polycyclic hydrocarbons in foods. The Annual Report of KFDA, 8, 1797-1808
  8. Gemma, F., Jose, L.D., Juan, M.L., Angel, T., Conrad, C, and Lutz, M. (2003) Polycyclic aromatic hydrocarbons in foods/Human exposure through the diet in catalonia, Spain, J. Food Prot., 66, 2325-2331
  9. U.K. Foodstandard, PAHs in the UK diet (2002) 2000 Total diet study samples
  10. de Vos R.H., van Dokkum, W., Schouten, A. and de Jong-Berkhout, P. (1990) Polycyclic aromatic hydrocarbons in Duch total diet samples. Food Chem. Toxicol., 18(1), in Duch total diet samples. Food Chem. Toxicol., 18, 263-268
  11. Kim, I.S., Ahn, M.S. and Jang, D.K. (1993) A study on the occurrence of benzo(a) pyrene in fats and oils by heat treatment(I). Korean J. Soc. Food Sci., 9, 323-328
  12. Korea Food & Drug Administration (2006) Control Program of benzopyrene in foods, 33-39
  13. Korea Food & Drug Administration (2007) Control Program of food poisoning and bezopyrene in foods, 31-49
  14. Kim, H.Y. and Song, D.S. (2008) Changes of benzo(a)pyrene content to manufacturing process in sesame oil and perilla oil. Korean J. Food Preserv., 15, 556-561
  15. Hu, S.J., Jin, S.H. and Choi, D.M. (2008) Analysis of benzo(a)pyrene in red ginseng beverage. J. Food Hyg. Safety, 23, 26-30