DOI QR코드

DOI QR Code

Inhibition of Apoptosis by Nitric Oxide in MCF-7 Cells

유방암 세포(MCF-7)에서 nitric oxide에 의한 apoptosis 억제

  • Kim, Kyun-Ha (Department of Biology, College of Natural Sciences, Pusan National University) ;
  • Roh, Sang-Geun (Department of Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Hae-Ryun (Department of oral pathology, College of Dentistry, Pusan National University) ;
  • Choi, Won-Chul (Department of Biology, College of Natural Sciences, Pusan National University)
  • 김균하 (부산대학교 자연과학대학 생물학과) ;
  • 노상근 (부산대학교 자연과학대학 생물학과) ;
  • 박혜련 (부산대학교 치과대학 구강병리학) ;
  • 최원철 (부산대학교 자연과학대학 생물학과)
  • Published : 2009.02.28

Abstract

Nitric oxide (NO) is a diffusible, multifunctional and transcellular messenger that has been implicated in numerous physiological and pathological conditions. It has been reported that NO induced apoptosis in tumor cells, macrophage cells and inhibited apoptosis in normal cells, endothelial cells. To examine whether NO could induce apoptosis in MCF-7 cells, cells were treated with SIN-1 (3-morpholinosydnonimine), NO donor. Cell viability did not change in SIN-1 treated cells for 48 h and there was no significantly changes in cell cycle progression or growth pattern by FACS analysis. But p53 protein, an apoptosis-related factor, increased SIN-1 treatment time dependently. Bcl-2, MDM2 and p21 were also accumulated. Bax level did not change. A major role of inhibiting apoptosis by NO in MCF-7 cells, cobalt chloride ($CoCl_2$) was added to cells preincubated with SIN-1. Whereas $CoCl_2$ treated cells underwent apoptosis, for 24 h SIN-1 preincubated cells were not induced apoptosis. Inactivated proteins, MDM2 and bcl-2, by $CoCl_2$ levels also increased in SIN-1 pre-treated cells. These results suggested that SIN-1 blocked p53 by MDM2 activation and inhibited apoptosis by inducing p21 and bcl-2 expression.

Nitric oxide (NO)는 세포 안의 다양한 생리학적, 병리학적 조건에서 확산, 세포 간 messenger와 같은 다양한 기능이 있으며, NO는 암세포나 macrophage 등과 같은 세포에서는 apoptosis를 유도하고, 정상세포나 내피 세포에서는 apoptosis를 억제한다고 보고되어져 있다. NO가 유방암 세포주인 MCF-7 세포에서는 apoptosis를 유도하는지 확인하기 위해 NO donor인 SIN-1을 처리하였다. SIN-1은 48시간 처리 시에도 세포 생존율에 영향을 주지 않았고, 세포주기나 성장 패턴에도 아무런 변화를 주지 않았다. 그러나 p53의 발현은 SIN-1 처리 시간에 따라 증가하였고, bcl-2, MDM2, p21의 발현도 함께 증가하였다. Bax의 발현은 SIN-1 처리 시에 변화가 없었다. MCF-7 세포에서 NO에 의한 apoptosis 억제를 보기 위하여, SIN-1을 선처리한 세포에 $CoCl_2$를 처리하였다. 세포에 $CoCl_2$ 만을 처리한 군에서는 확연한 apoptosis를 나타내었지만, SIN-1을 24 시간 선처리한 세포에서는 apoptosis를 관찰할 수 없었다. Cobalt Chloride에 의해 감소되었던 p53, MDM2, bcl-2 발현 역시 SIN-1을 24시간 선처리한 세포에서 증가하였다. 이런 결과들은 SIN-1에 의해 발현된 MDM2가 p53의 기능을 막으며, 또한 p21과 bcl-2의 발현이 유도되어 apoptosis를 억제함을 제시한다.

Keywords

References

  1. Bae, J. Y., S. J. Ahn, W. Han, and D. Y. Noh. 2007. Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines. Journal of Cellular Biochemistry 101, 1038-1045 https://doi.org/10.1002/jcb.21241
  2. Canman, C. E., T. M. Gilmer, S. B. Coutts, and M. B. Kastan. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9, 600-611 https://doi.org/10.1101/gad.9.5.600
  3. Chazotte-Aubert, L., O. Pluquet, P. Hainaut, and H. Ohshima. 2001. Nitric oxide prevents γ- radiation-induced cell cycle arrest by impairing p53 function in MCF- 7 cells. Biochem. Biophys. Res. Commun. 281, 766-771 https://doi.org/10.1006/bbrc.2001.4423
  4. Chen, J., X. Wu, J. Lin, and A. J. Levine. 1996. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16, 2445- 2452
  5. Chung, H. T., H. O. Pae, B. M. Choi, T. R. Billiar, and Y. M. Kim. 2001. Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075- 1079 https://doi.org/10.1006/bbrc.2001.4670
  6. El- Deiry, W., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825 https://doi.org/10.1016/0092-8674(93)90500-P
  7. Evan, G. I., A. H. Wyllie, G. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119-128 https://doi.org/10.1016/0092-8674(92)90123-T
  8. Fuchs, E. J., K. A. McKenna, and A. Bedi. 1997. p53-dependent DNA damage-induced apoptosis requires Fas/APO-1 independent activation of CPP332 beta. Cancer Res. 57, 2550-2554
  9. Genaro, A. M., S. Hortelano, A. Alvarez, C. Martinez, and L. Bosca. 1995. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanism involving sustained Bcl-2 levels. J. Clin. Invest. 95,1884-1890 https://doi.org/10.1172/JCI117869
  10. Glockzin, S., A. V. Knethen, M. Scheffner, and B. Brune. 1999. Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J. Biol. Chem. 274, 19581-19586 https://doi.org/10.1074/jbc.274.28.19581
  11. Goldberg, M. A., S. P. Dunning, and H. F. Bunn. 1988. Refualtion of the erythropoiet in gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415 https://doi.org/10.1126/science.2849206
  12. Gradin, K. 1996. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell Bio. 16, 5221-5231
  13. Guillemin, K. and M. A. Krasnow. 1997. The hypoxic response: huffing and HIFing. Cell 89, 9-12 https://doi.org/10.1016/S0092-8674(00)80176-2
  14. Haas Kogan, D. A., S. C. Kogan and D. Levi. 1995. Inhibition of apoptosis by the retinoblastoma gene product. EMBO. J. 14, 461-472
  15. Haupt, Y., S. Rowan, and M. Oren. 1995. p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene 10, 1563-157
  16. Hollstein, M., B. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutation in human cancers. Science 253, 49-53
  17. Kolb, J. P. 2000. Mechanisms involved in the pro- and antiapoptotic role of NO in human leukemia. Leukemia 14, 1685-1694 https://doi.org/10.1038/sj.leu.2401896
  18. Levine, A. J., J. Momand, and C. A. Finlay. The p53 tumor suppresor gene. 1991. Nature 351, 453-455 https://doi.org/10.1038/351453a0
  19. Li, J., T. R. Billiar, R. V. Talanian, and Y. K. Kim. 1997. Nitric oxide reversibly inhibits seven members of the caspase familyvia S-nitrosylation. Biochem. Biophys. Res. Commun. 240, 419-424 https://doi.org/10.1006/bbrc.1997.7672
  20. Maki, C. G., J. M. Huibregtse, and P. M. Howley. 1996. In vivo ubiquitination and prteasome-mediated degradation of p53. Cancer Res. 56, 2649-2654
  21. Martinez, J., I. Georgoff, J. Martinez, and A. J. Levine. 1991. Cellular localizaiont and cell cycle regulation by a temperature- sensitive p53 protein. Genes Dev. 5, 151-159
  22. Marx, J. 1993. Cell death studies yield cancer clues. Science 259, 760-761 https://doi.org/10.1126/science.8430327
  23. Momand, J., G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245 https://doi.org/10.1016/0092-8674(92)90644-R
  24. Mebmer, U. K., J. C. Reed, and B. Brune. 1996. Bcl-2 protects macrophages from nitirc oxide-induced apoptosis. The journal of Biological chemistry 271, 20192-20197 https://doi.org/10.1074/jbc.271.33.20192
  25. Nielsen, L. L., J. Dell, E. Maxwell, L. Armstrong, D. Maneval, and J. J. Catino. 1997. Efficacy of p53 adenovirus- mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 4, 129-138
  26. Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olsom, J. W. Haper, and S. J. Elledge. 1995. p53- independent expression of p21 in muscle and other terminally differentiationg cells. Science 267, 1024-1027 https://doi.org/10.1126/science.7863329
  27. Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124, 1-6 https://doi.org/10.1083/jcb.124.1.1
  28. Salceda, S., I. Beck, and J. Caro. 1996. Absolute requirement of acrylhydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Arch. Biochem. Biophys. 384, 389-394
  29. Shaw, P., R. Bovey, s. Tardy, R. Sahli, B. Sordat, and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89, 4495-4499 https://doi.org/10.1073/pnas.89.10.4495
  30. Waldman, T., Y. Zhang, and L. Dillehay. 1997. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 3, 1034-1036 https://doi.org/10.1038/nm0997-1034
  31. Williams, G. T. 1991. Programmed cell death; apoptosis and oncogenesis. Cell 65, 1097-1098 https://doi.org/10.1016/0092-8674(91)90002-G
  32. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interluekin- 6. Nature (Lond.) 352, 345-347 https://doi.org/10.1038/352345a0

Cited by

  1. Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.1012