DOI QR코드

DOI QR Code

Si(100)-2×1 표면과 개질된 Si(100) 표면 상에서 실릴 (Silyl) 흡착충의 형성과 안정성

Preparation and Stability of Silyl Adlayers on 2×1-Reconstructed and Modified Si(100) Surfaces

  • Jo, Sam-K. (Department of Chemistry, Kyungwon University)
  • 발행 : 2009.01.30

초록

깨끗한 Si(100)-$2{\times}1$, D를 먼저 흡착시킨 Si(100)-$2{\times}1$, 그리고 이온 빔에 의해 원자 수준으로 거칠어진 Si(100) 등의 세 가지 표면에 각각 $Si_2H_6$의 흡착시켜 포화 실릴($-SiH_3(a)$) 흡착층을 형성시키고 실험적으로 비교 고찰하였다 전구체 흡착 거동(기작)과 함께 $Si_2H_6$의 표면 분해(화학)흡착 반응성은 개질을 시켜주지 않은 깨끗한 Si(100)-$2{\times}l$ 표면에서 가장 크게 나타났다. 이 결과는 화학흡착 반응 즉, $H_3Si-SiH_3$ 결합 분해와 두 개의 Si-$SiH_6(a)$ 표면결합 형성이 표면의 Dangling Bond Pair 상에서 동시적으로(Concertedly) 일어나는 $Si_2H_6$의 분해흡착 기작으로 설명될 수 있었다. 또한 Si(100)-$2{\times}l$ 표면에 흡착된 $-SiH_3(a)$의 매우 논은 열적 안정성은 ${\sim}0.9\;ML$나 되는 표면 덮힘도와 함께 실릴기로 조밀하게 흡착된 표면에 Dangling Bond가 존재하지 않는 것에 의한 것으로 밝혀졌다.

Saturation-coverage silyl, $-SiH_3(a)$, overlayers were prepared from $Si_2H_6$ adsorption on three comparative surfaces: clean unmodified; D-precovered; and atomically roughened Si(100). Together with its precursor-mediated adsorption behavior, the surface reactivity of $Si_2H_6$ was found to be the highest on the unmodified Si(100)-$2{\times}1$ surface. This was correlated with its dissociative adsorption mechanism, in which both the $H_3Si-SiH_3$ bond scission and the dual surface $Si-SiH_3(a)$ bond formation require a surface dangling bond 'pair'. The unusually high thermal stability of $-SiH_3(a)$ on the unmodified surface was ascribed to a nearly close-packed $-SiH_3(a)$ coverage of ${\sim}0.9$ monolayer and the consequent lack of dangling bonds on the silyl-packed surface.

키워드

참고문헌

  1. H. Rauscher, Surf. Sci. Rep. 2001, 42, 207 and references therein https://doi.org/10.1016/S0167-5729(01)00011-5
  2. J. M. Jasinski and S. M. Gates, Acc. Chem. Res. 1991, 24, 9 and references therein https://doi.org/10.1021/ar00001a002
  3. S. M. Gates, Surf. Sci. 1988, 195, 307; R. Imbhihl, J. E. Demuth, S. M. Gates, and B. A. Scott, Phys. Rev. B, 1989, 39, 5222; S. M. Gates, C. M. Greenlief, and D. B. Beach, J. Chem. Phys. 1990, 93, 7493; S. M. Gates, C. M. Greenlief, D. B. Beach, and R. R. Kunz, Chem. Phys. Lett. 1989, 154, 505 https://doi.org/10.1016/0039-6028(88)90798-4
  4. R. Imbhihl, J. E. Demuth, S. M. Gates, and B. A. Scott, Phys. Rev. B, 1989, 39, 5222 https://doi.org/10.1103/PhysRevB.39.5222
  5. S. M. Gates, C. M. Greenlief, and D. B. Beach, J. Chem. Phys. 1990, 93, 7493 https://doi.org/10.1063/1.459424
  6. S. M. Gates, C. M. Greenlief, D. B. Beach, and R. R. Kunz, Chem. Phys. Lett. 1989, 154, 505 https://doi.org/10.1016/0009-2614(89)87141-6
  7. B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Chem. Phys. 2000, 113, 2470[5]B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Appl. Phys. 2001, 90, 4981 https://doi.org/10.1063/1.482064
  8. B. A. Ferguson, C. T. Reeves, D. J. Safarik, and C. B. Mullins, J. Appl. Phys. 2001, 90, 4981 https://doi.org/10.1063/1.1402141
  9. Y. Suda, D. Lubben, T. Motooka, and J. E. Greene, J. Vac. Sci. Tech. A 1990, 8, 61; D.-S. Lin, T. Miller, T.-C. Chiang, R. Tsu, and J. E. Greene, Phys. Rev. B 1993, 48, 11846 https://doi.org/10.1116/1.576356
  10. D.-S. Lin, T. Miller, T.-C. Chiang, R. Tsu, and J. E. Greene, Phys. Rev. B 1993, 48, 11846 https://doi.org/10.1103/PhysRevB.48.11846
  11. C. Lutterloh, M. Wicklein, A. Dinger, J. Biener, and J. Kuppers, Surf. Sci. 2002, 498, 123 https://doi.org/10.1016/S0039-6028(01)01515-1
  12. S. K. Jo, J. Kor. Vac. Soc. 2006, 15, 73; B. Gong, S. Jo, G. Hess, P. Parkinson, and J. G. Ekerdt, J. Vac. Sci. Technol. A 1998, 16, 1473
  13. B. Gong, S. Jo, G. Hess, P. Parkinson, and J. G. Ekerdt, J. Vac. Sci. Technol. A 1998, 16, 1473 https://doi.org/10.1116/1.581172
  14. S. M. Gates and C. M. Chiang, Chem. Phys. Lett. 1991, 184, 448; S. M. Gates, J. Cryst. Growth 1992, 120, 269 https://doi.org/10.1016/0009-2614(91)80017-R
  15. S. M. Gates, J. Cryst. Growth 1992, 120, 269 https://doi.org/10.1016/0022-0248(92)90401-4
  16. NIST Chemistry Webbook: http://webbook.nist.gov/chemistry
  17. J. Simon, R. Feurer, A. Reynes, and R. Morancho, J. Anal. Appl. Pyrol. 1992, 24, 51 https://doi.org/10.1016/0165-2370(92)80004-6
  18. H. Chatham, D. Hils, R. Robertson, and A. Gallagher, J. Chem. Phys. 1984, 81, 1770 https://doi.org/10.1063/1.447848
  19. S. Wright and E. Hasselbrink, J. Chem. Phys. 2001, 114, 7228 https://doi.org/10.1063/1.1359521
  20. M. J. Bronikowski, Y. Wang, M. T. McEllistrem, D. Chen, and R. J. Hamers, Surf. Sci. 1993, 298, 50; Y. Wang, M. J. Bronikowski, and R. J. Hamers, Surf. Sci. 1994, 311, 64 R. J. Hamers and Y. Wang, Chem. Rev. 1996, 96, 1261 https://doi.org/10.1016/0039-6028(93)90079-Y
  21. Y. Wang, M. J. Bronikowski, and R. J. Hamers, Surf. Sci. 1994, 311, 64 https://doi.org/10.1016/0039-6028(94)90481-2
  22. R. J. Hamers and Y. Wang, Chem. Rev. 1996, 96, 1261 https://doi.org/10.1021/cr950213k
  23. C. Isobe, H. Cho, and J. E. Crowell, Surf. Sci. 1993, 295, 99 https://doi.org/10.1016/0039-6028(93)90187-O
  24. G. J. Batinica and J. E. Crowell, J. Phys. Chem. B 1998, 102, 4135 https://doi.org/10.1021/jp980658n
  25. F. C. H. Lin, E. S. Tok, and H. C. Kang, Phys. Rev. B, 2006, 74, 205333 https://doi.org/10.1103/PhysRevB.74.205333
  26. K. Uesugi, M. Yoshimura, T. Yao, T. Sato, T. Sueyoshi, and M. Iwatsuki, J. Vac. Sci. Technol. B 1994, 12, 2018 https://doi.org/10.1116/1.587693
  27. S. M. Gates, C. M. Greenlief, D. B. Beach, and P. A. Holbert, J. Chem. Phys. 1990, 92, 3144; K. B. Dobbs and D. J. Doren, J. Am. Chem. Soc. 1993, 115, 3731 https://doi.org/10.1063/1.457912
  28. K. B. Dobbs and D. J. Doren, J. Am. Chem. Soc. 1993, 115, 3731 https://doi.org/10.1021/ja00062a044