DOI QR코드

DOI QR Code

Structural Study of Interface Layers in Tetragonal-HfO2/Si using Density Functional Theory

범 밀도함수론을 이용한 정방정계-HfO2/Si의 계면 층 구조 연구

  • Kim, D.H. (Deportment of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, H.I. (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Y.C. (Deportment of Materials Engineering, Korea University of Technology and Education)
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Published : 2009.01.30

Abstract

We calculated tetragonal-$HfO_2$/Si superstructures using density functional theory. When a and b-axes of cubic-$HfO_2$ were increased to be matched with those of Si for epitaxy contact, c-axis was decreased by 2%. Eight models of interface layers were produced by choosing different terminating layers of tetragonal-$HfO_2$ and Si substrate at the interface. It was found that tetragonal-$HfO_2$ $(004)_{1/4}$/Si $(004)_{3/4}$ superstructure was the most favorable and tetragonal-$HfO_2$ (004)$_{1/4}$/Si (002) superstructure was the most unfavorable. In tetragonal-$HfO_2$ $(004)_{1/4}$/Si (002) superstructure, there were two oxygen vacancies in tetragonal-$HfO_2$ as two oxygen atoms were moved to Si substrate located at the interface.

본 연구는 정방정계-$HfO_2$/Si 초격자의 계면 층 구조를 범밀도함수론 (density functional theory)을 이용하여 계산하였다. 입방정계-$HfO_2$는 Si 기판과 에피택시 접합을 위하여 a와 b축의 길이가 증가되면 c축의 길이가 2% 감소하여 정방정계 구조가 되었다. 정방정계-$HfO_2$와 Si 기판의 말단층에 따라서 8 개의 계면 층 모델이 생성되었다. 정방정계-$HfO_2$ (004)$_{1/4}$/Si $(004)_{3/4}$ 초격자구조가 에너지 관점에서 가장 안정하였고, 정방정계-$HfO_2$ $(004)_{1/4}$/Si (002) 초격자구조는 가장 불안정하였다. 에너지 관점에서 가장 불안정한 구조의 경우, 정방정계-$HfO_2$의 계면에 존재하는 2 개의 산소 원자가 Si 기판으로 이동하여 정방정계-$HfO_2$ 초격자구조에 2 개의 산소 공공이 생성되었다.

Keywords

References

  1. A. Kerber, E. Cartier, L. Pantisano, R. Degraewve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes, and U. Schwalke, IEEE Electron Device Lett. 24, 87 (2003) https://doi.org/10.1109/LED.2003.808844
  2. G. D. Wilk and D. A. Muller, Appl. Phys. Lett. 83, 3984 (2003) https://doi.org/10.1063/1.1626019
  3. S. Zafer, A. Kumer, E. Gusev, and E. Cartier, IEEE Trans. Device Mater. Reliab. 5, 45 (2005) https://doi.org/10.1109/TDMR.2005.845880
  4. D. Lim and R. Haight, J. Vac. Sci. Technol. B 23, 201 (2005) https://doi.org/10.1116/1.1850105
  5. H. Jin, H.J. Kang, and M.-H. Cho, 한국진공학회:학술대회논문집 31, 138 (2006)
  6. 김석환, 백재윤, 김민국, 박호영, 안종렬, 박종윤, 김윤수, 황한나, 황찬국, 안기석, 한국진공학회:학술대회논문집 30, 65 (2006)
  7. R. Rub and P. W. R. Corfield, L. Am. Ceram. Soc. 53, 126 (1970) https://doi.org/10.1111/j.1151-2916.1970.tb12052.x
  8. R. M. Wallace and G. D. Wilk, Crit. Rev. Solid State Mater. Sci. 28, 231 (2003) https://doi.org/10.1080/714037708
  9. J. Roberston, Rep. Prog. Phys. 69, 327 (2006) https://doi.org/10.1088/0034-4885/69/2/R02
  10. N. Miyata, Appl. Phys. Lett. 89, 102903 (2006) https://doi.org/10.1063/1.2337878
  11. D. Y. Cho, K. S. Park, B. H. Choi, S. J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, R. Jung, J. C. Lee, and S. D. Bu, Appl. Phys. Lett. 88, 193502 (2006) https://doi.org/10.1063/1.2201050
  12. X. Y. Qiu, H. W. Liu, F. Fang, M. J. Ha, and J. M. Liu, Appl. Phys. Lett. 88, 072906 (2006) https://doi.org/10.1063/1.2168505
  13. H. S. Baik, M. Kim, G.-S. Park, S. A. Song, M. Varela, A. Franceschetti, S. T. Pantelides, and S. J. Pennycook, Appl. Phys. Lett. 85, 672 (2004) https://doi.org/10.1063/1.1772855
  14. Y. Y. Lebedinskii, A. Zenkevich, E. P. Gusev, and M. Gribelyuk, Appl. Phys. Lett. 86, 191904 (2005) https://doi.org/10.1063/1.1923158
  15. C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, and E. Shero, Appl. Phys. Lett. 81, 1417 (2002) https://doi.org/10.1063/1.1499513
  16. S. Ferrari and G. Scarel, J. Appl. Phys. 96, 144 (2004) https://doi.org/10.1063/1.1753080
  17. E. Ryshkewitch and D. W. Richerson, Oxide Ceramics: Physical Chemistry and Technology, (Academic Press, 1985), 471
  18. J. Wang, H. P. Li, and R. Stevens, J. Mater. Sci. 27, 5397 (1992) https://doi.org/10.1007/BF00541601
  19. V. B. Glushkova and M. V. Kravchinskaya, Ceram. lnt. 11, 56 (1985) https://doi.org/10.1016/0272-8842(85)90010-0
  20. C. Tang, B. Tuttle, and R. Ramprasad, Phys. Rev. B 76, 073306 (2007) https://doi.org/10.1103/PhysRevB.76.073306
  21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Hafuer, Phys. Rev. B 49, 14251 (1994) https://doi.org/10.1103/PhysRevB.47.558
  22. G. Kresse and J. Hafuer, Phys. Rev. B 49, 14251 (1994) https://doi.org/10.1103/PhysRevB.49.14251
  23. G. Kresse and J. Furthiiller, Comput. Mat. Sci. 6, 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  24. G. Kresse and J. Furthuller, Phys. Rev. B 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  26. D. Vanderbilt, Phys. Rev. B 41, R7892 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  27. D. M. Wood and A. Zunger, J. Phys. A 18, 1343 (1985) https://doi.org/10.1088/0305-4470/18/9/018
  28. P. Pulay, Chern. Phys. Lett. 73, 393 (1980) https://doi.org/10.1016/0009-2614(80)80396-4
  29. E. Wiberg and A. F. Holleman, Inorganic Chemistry, (Elsevier, 2001), 857
  30. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008) https://doi.org/10.1107/S0021889808012016