DOI QR코드

DOI QR Code

원형수직구에 설치된 강성벽체에 작용하는 토압산정방법

Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft

  • 공진영 (한양대학교 대학원 토목공학과) ;
  • 신영완 ((주)하경엔지니어링 터널지반부) ;
  • 황의성 (한양대학교 대학원 토목공학과) ;
  • 천병식 (한양대학교 토목공학과)
  • 발행 : 2009.01.31

초록

평면변형조건의 벽체에 작용하는 토압은 벽체의 형태에 따라 많은 연구가 수행되어 거의 통일된 방법이 설계에 사용되고 있다. 그러나, 일반적으로 지중연속벽(diaphragm wall)공법에 의해 시공되는 원형수직구 벽체에 작용하는 토압은 정지토압을 적용하여 설계하고 있어 안전측이지만 과다한 단면설계를 수행하고 있다. 본 연구에서는 사질토지반에 설치된 원형수직구의 지반-구조물 상호작용에 의해 강성벽계에 작용하는 평형토압을 산정하기 위해 변형구속범의 적용을 제안하였다. 또한, 원통형벽체 모형실험을 통하여 벽체에 작용하는 토압분포를 확인하였다. 실험결과 토압은 주동토압보다 약 1.4배 크고 정지토압보다 0.8배 작았으며, 변형구속법에 의한 예측값과 전반적으로 잘 일치하였다.

On plane strain condition, many researchers have investigated the earth pressure according to the shape of wall, and standardized method has been applied to the design of the retaining wall. But on cylindrical diaphragm wall, at-rest earth pressure has been generally used. Even though this method is on conservative side, it may lead to over-design. In this paper, the application of convergence confinement method to the calculation of the earth pressure acting on the cylindrical diaphragm wall of a shaft was suggested. In addition, a model test was carried out to investigate the distributions of earth pressure. Model test results show that the earth pressures of diaphragm wall are about 1.4 times larger than active earth pressure and about 0.8 times less than at-rest earth pressure.

키워드

참고문헌

  1. 신영완, 박상찬, 문경선, 한유찬, 김성수 (2006), 국내외 수직구 설계기술에 관한 연구, 한국지반공학회 가을학술발표회논문집, pp.2103-2115
  2. 이인모 (2004), 터널의 지반공학적 원리, 도서출판 새론, pp.11-77
  3. 한국지반공학회 (2001), 지반공학시리즈 12-정보화시공, 한국지반공학회, pp.146-149
  4. Auld, F. A. (1979), "Design of concrete shaft lingings", Proceeding of Institute Civil Engineers, Part 2, pp.817-832
  5. Bell, M. J. (1982), 'The design of shaft linings in coal measure rocks', Proceeding of a Symposium on Strata Mechanics, Newcastle upon Tyne, April, pp.160-166
  6. Britto, A. M. and Kusakabe, O. (1982), "Stability of axisymmetric excavations", Geotechnique, Vol.32, No.3, pp.261-270 https://doi.org/10.1680/geot.1982.32.3.261
  7. Britto, A. M. and Kusakabe, O. (1983), "Stability of axisymmetric excavations in clays", Journal of Geotechnical Engineering, ASCE, Vol.109, No.5, pp.666-681
  8. Britto, A. M. and Kusakabe, O. (1983), "On the stability of supported excavations", Canadian Geotechnical Journal, Vol.2, No.1, pp.1-15
  9. Bruneau, G., Tyler, D. B., Hadjigeorgiou, J. and Potvin, Y. (2003), "Influence of faulting on a mine shfat - a case study: part I - Background and instrumentation", International Journal of Rock Mechanics and Mining Sciences, Vol.40, Issue 1, pp.95-111 https://doi.org/10.1016/S1365-1609(02)00115-6
  10. Carranza-Torres, C. and Fairhurst, C. (2000), "Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses That Satisfy the Hoek-Brown Failure Criterion", Tunneling and Underground Space Technology, Volume 15, Number 2, April 2000, pp.187-213(27) https://doi.org/10.1016/S0886-7798(00)00046-8
  11. Coates, D. F. (1981), "Rock mechanics principles : energy, mines and resources", Ottawa, Mines Branch, Government of Canada, Chapter 2 and 3
  12. Duncan Fama, M. E. (1993), "Numerical modelling of yield zones in weak rocks", Comprehensive rock engineering, Vol.2, Chapter 3, pp.49-75
  13. Karafiath, L. (1953), "On some problems of earth pressure", Acta Tech. Acad. Sci. Hung., pp. 328-357
  14. Hoek, E. and Brown, E.T. (1980), "Underground Excavations in Rock", pp.249-253
  15. Hoek, E. (2000), "Rock Engineering", Balkema, pp.204-221
  16. Ladanyi, B. (1974), "Use of the long-term strength concept in the determination of ground pressure on tunnel linings", Advances in Rock Mechanics, Third Congress of the International Society for Rock Mechanics, Vol.2B, pp.1150-1156
  17. Muller-Kirchenbauer, H., B. Walz, U. H. Klapperich (1980), "Experimentelle und Theoretische Untersuchungen zum Erddruckproblem auf radial symmetrische Senkkasten und Schachte", Veroff. des Grundbauinstitutes der TU Berlin, H.7, p.113
  18. Obert, L. and Duvall, W. I. (1967), "Rock mechanics and the design of structures in rock", John Wiley and Sons, New York, pp.89-94
  19. Oreste, P.P. (2003), "Analysis of structural interaction in tunnels using the convergence confinement approach", Tunnelling and Underground Space Technology, Vol.18, No.4, pp.347-363
  20. Ostrowski, W. J. S. (1972), "Design considerations for modern shaft linings", The Canadian Mining and Metallurgical, pp.58-72
  21. Prater, E. G. (1977), "An examination of some theories of earth pressure on shaft linings", Canadian Geotechnical Journal, Vol.14, pp.91-106 https://doi.org/10.1139/t77-007
  22. Roesner, E. K., Poppen, S. A. G. and Konopka, J. C. (1983), "Stability during shaft sinking", 1st Int. Conf. on Stability in Underground Mining, August 16-18, Canada, pp.182-199
  23. Savin, G. (1961), "Stress concentration around holes", Pergamon Press, pp.120-185
  24. Steinfeld, K. (1958), "Uber den erddruck auf schacht und brunnenwandungen", Contribution to the Foundation Engineering Meering, Hambrug, German Soc. of Soil Mech. Found. Eng., pp.111-126
  25. Szechy, K. (1966), "The art of tunnelling", Akademiai kiado, Budapest, pp.909-924
  26. Talobre, J. (1957), La mechanique des roches, Dunod, Paris, p.444
  27. Terzaghi, K. (1943), 'Theoretical soil mechanics', John Wiley and Sons, New York, pp.202-215
  28. Wilson, A. H. (1972), ""Research into the determination of pillar size"", Part I, An Hypothesis Concerning Pillar Stability; The Mining Engineer, Vol.131, No.141, pp.409-417
  29. Wong, R. C. K. (1986), "Design and performance evaluation of tunnels and shafts", Ph. D. Thesis, The University of Alberta, Department of Civil Engineering
  30. Wong, R. C. K. and Kaiser, P. K. (1988), "Design and performance evaluation of vertical shafts: rational shaft design method and verification of design method", Canadian Geotechnical Journal, Vol.25, No.1-2, pp.320-327 https://doi.org/10.1139/t88-034