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THAINE’S THEOREM IN FUNCTION FIELD

Hwanyup Jung*

Abstract. Let F be a finite real abelian extension of a global
function field k with G = Gal(F/k). Assume that F is an extension
field of the Hilbert class field Ke of k and is contained in a cyclotomic
function field Kn. Let ` be any prime number not dividing phk|G|.
In this paper, we show that if θ ∈ Z[G] annihilates the Sylow `-
subgroup of O×

F /CF, then (q−1)θ annihilates the Sylow `-subgroup
of ClF.

1. Introduction

Let F be a totally real abelian number field with G = Gal(F/Q). Let
O×

F be the group of global units of F, CF the group of cyclotomic units
of F of conductor level and ClF the class group of F. Let p be a prime
not dividing [F : Q]. In [4], Thaine has shown the following remarkable
result: If θ ∈ Z[G] annihilates the Sylow p-subgroup of O×

F /CF, then 2θ
annihilates the Sylow p-subgroup of ClF.

In this paper we consider the analogous problem in function fields.
Let k be a global function field over the finite field Fq with q elements
of characteristic p. Fix a place ∞ of k of degree one and a sign function
sgn : k∞ → Fq with sgn(0) = 0, where k∞ is the completion of k at ∞.
Let A be the Dedekind subring of k consisting of the functions regular
away from ∞. For any finite separable extension F of k, write OF for
the integral closure of A in F and O×

F be its group of units. Also write
ClF for the ideal class group of OF and hF = |ClF|. In this paper we
only consider finite abelian extension F of k contained in a cyclotomic
function field of (k,∞, sgn). Let F be a finite real abelian extension
of k, i.e., ∞ splits completely in F, with G = Gal(F/k). We assume
that F contains the Hilbert class field of (k,∞). Let CF be the group
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of cyclotomic units of F in the sense of [1] (see the definition 2.2). The
main result of this paper is

Theorem 1.1. Let ` be a prime not dividing ` - phk|G|. If θ ∈ Z[G]
annihilates the Sylow `-subgroup of O×

F /CF, then (q − 1)θ annihilates
the Sylow `-subgroup of ClF.

For any proper integral ideal of n of A, we write Φ(n) = |(A/n)×| and
denote by Kn the cyclotomic function field of (k,∞, sgn) of conductor n.
Moreover we write Ke for the Hilbert class field of (k,∞). For details in
the theory of sgn-normalized Drinfeld A-module and cyclotomic function
field over the global function field k, we refer the readers to [2] or [3].

2. Preliminary

2.1. Cyclotomic units

Let ρ be a fixed sgn-normalized Drinfeld A-module. For any proper
ideal n of A, we fix a primitive n-torsion point λn of ρ.

Lemma 2.1. Let n = pf, where f 6= e and p is a prime ideal of A.
Then we have

NKn/Kf
(λn) =

{
ρp(λn), if p|f,
ρp(λn)1−σ−1

p , if p - f,

where σp denotes the Frobenius automorphism of p in Kf.

Let F be a finite real abelian extension of k. Let m be the conductor
of F, i.e. Km is the smallest cyclotomic function field containing F. For
each proper ideal f of A, put Ff = F ∩Kf and λf,F = NKf/Ff

(λf).

Definition 2.2. Let DF be the G-submodule of F× generated by F×q
and λf,F with all f 6= e. We define CF := DF ∩ O×

F , called the group of
cyclotomic units of F.

As aG-module, DF is generated by F×q ∪{λf,F : e 6= f|m}∪{NKp/Ke
(λp)}p,

where p runs over all prime ideals of A such that p - m.
For any prime ideal q of A which splits completely in F, write F(q) =

F ·Kq. Since all prime ideals of OF above q are totally ramified in F(q),
G acts on the set of prime ideals of OF(q) above q.

Proposition 2.3. For any unit ε ∈ CF, there exists u ∈ O×
F(q) such

that NF(q)/F(u) = 1 and u ≡ ε mod Q̃σ for all σ ∈ G.
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Proof. It suffices to show that for any ε ∈ F×q ∪ {λf,F : e 6= f|m} ∪
{NKp/Ke

(λp)}p, where p runs over all prime ideals of A such that p - m

and p 6= q, there exists u ∈ O×
F(q) satisfying the required conditions.

For ε ∈ F×q , it is easy to see that u = ε satisfies the required ones.
For ε = λf,F with e 6= f|m, take u =

∏
τ∈Gal(Kf/Ff)

(λτ
f + λq). Then

u ∈ Ff(q) ⊂ F(q), and so u ∈ O×
F(q). Since NF(q)/F(u) = NKfq/Kf

(u), we
have

NF(q)/F(u) =
∏

τ∈Gal(Kf/Ff)

(
ρq(λτ

f )
λτ

f

)
= NKf/Ff

(λf)σq−1 = 1.

Since λq is contained in Q̃σ for all σ ∈ G, u ≡
∏

τ∈Gal(Kf/Ff)
λτ

f =

λf,F mod Q̃σ. For ε = NKp/Ke
(λp) with p - m, p 6= q, similar as above,

we can show that u =
∏

τ∈Gal(Kp/Ke)
(λτ

p + λq) satisfies the required
ones.

Fix a generator s of (A/q)× and let τ ∈ Gal(F(q)/F) be the au-
tomorphism such that τ(λq) = ρs(λq). Let u be a unit in Lemma
2.3 and choose w ∈ F(q) satisfying wτ = uw. Then we have (w) =
D
∏

σ∈G(Q̃σ−1
)rσ , where D is the lift of an ideal of OF relatively prime

to q and rσ ∈ Z. As in classical case, rσ is determined uniquely modulo
Φ(q) by srσ ≡ σ(ε) mod Q.

2.2. Applications of Tchebotarev density theorem

Given ideal class c of OF and a positive integer N , we define P(c, N)
as the set of prime ideals Q belonging to c and lying above a prime ideal
q of A which splits completely in F and Φ(q) ≡ 0 mod N . By using the
Tchebotarev density theorem ([3, Theorem 9.13 A]), we can show that
if N is a positive integer with p - N , then P(c, N) is an infinite set.

Lemma 2.4. For any nonconstant z ∈ k×∞ and a positive integer c
prime to p, k∞( c

√
z) is a totally ramified extension over k∞.

Proof. It is an easy consequence of local class field theory.

Proposition 2.5. Let N and c be positive integers with c|N and
p - N . Let x be a nonconstant element of OF. Suppose that for all
(except possibly a finite set) of the prime ideals Q ∈ P(c, N), there

exists yQ ∈ OF such that x ≡ yc
Q mod Q. Then x = αyc/f for some

y ∈ OF and α ∈ F∗q , a f -th root of unity, where f = gcd(c, q − 1).
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Proof. Fix ζc ∈ Fq a primitive c-th root of unity and let c
√
x be a fixed

c-th root of x. By Lemma 2.4, F( c
√
x)/F is a geometric extension and

F̃ ∩ F( c
√
x) = F, where F̃ = F(ζc). Let L be the Galois closure of F( c

√
x)

over F. Clearly, L ⊆ F̃( c
√
x). Let F′ = FqdF ⊆ F̃, where d = [L : F( c

√
x)].

Since F( c
√
x)/F is a geometric extension, L = F′F( c

√
x) = F′( c

√
x), F̃∩L =

F′ and F′∩F( c
√
x) = F. Let f = gcd(c, qd−1) and ζf = (ζc)c/f . Clearly,

F(ζf ) ⊆ F′. Let Q(X) be the irreducible polynomial of c
√
x over F.

Then Q(X) =
∏

j∈J(X − ζj
c

c
√
x), where J is a subset of {1, 2, . . . , c} and

ζj
c ∈ Fqd for all j ∈ J . It is easy to see that ζj

c ∈ Fqd if and only if j divides
c/f . Hence Q(X) =

∏
j∈J∗(X − ζj

f
c
√
x) for some J∗ ⊆ {1, 2, . . . , f}.

Since L = F′F( c
√
x) and F′ ∩ F( c

√
x) = F, Q(X) is also the irreducible

irreducible polynomial of c
√
x over F′. Since L = F( c

√
x, ζj

f : j ∈ J∗) ⊆
F( c
√
x, ζf ) ⊆ F′( c

√
x) = L, we have L = F( c

√
x, ζf ) and F′ = F(ζf ). Note

that L/F′ is a finite Galois extension and let Γ = Gal(L/F′). Let Uf be
the group of f -th roots of unity in F̄q. Since Q(X) =

∏
σ∈Γ(X−σ( c

√
x)),

( c
√
x)σ−1 ∈ Uf for all σ ∈ Γ. Let ψ : Γ → Uf be the homomorphism

defined by ψ(σ) = ( c
√
x)σ−1. Then Im(ψ) = 〈ζf0〉 for some f0|f , and so

Q(X) =
∏f0

j=1(X − ζj
f0

c
√
x). Now we can follow the same argument as

in the classical case for the rest of proof.

For each nonconstant unit x ∈ O×
F , we define the number φ(x) as the

greatest positive integer n such that x = un for some u ∈ F. Clearly,
φ(σ(x)) = φ(x) for all σ ∈ G. Fix a triple (x, c, N), where x ∈ CF, c an
ideal class and N a positive integer with p - N . For each Q ∈ P(c, N), let
sQ be a fixed generator of (A/q)×, where q = Q ∩ A. Then there exists
a nonzero fractional ideal DQ of OF such that DN

Q

∏
σ∈G(Qσ−1

)rσ(Q) is
a principal ideal, where the integers rσ(Q) satisfy srσ(Q)

Q ≡ σ(x) mod Q.
Let σ ∈ G be fixed. We define g = g(x, c, N, σ) as the greatest common
divisor of N and of all the rσ(Q) such that Q ∈ P(c, N).

Fix an embedding of F into k∞. We call x ∈ F positive if sgn(x) = 1.

Theorem 2.6. Given x ∈ CF\F×q , c an ideal class of OF, N a positive
integer with p - N and σ ∈ G, let g = g(x, c, N, σ). If gcd(N, q − 1) = 1
or σ(x) is a positive, then we have gcd(N,φ(x))|g| gcd(N, fφ(x)), where
f = gcd(g, q − 1).

Proof. As in classical case, it can be shown easily that gcd(N,φ(x))
divides g. For any Q ∈ P(c, N), there exists yQ ∈ A such that σ(x) ≡
yg

Q mod Q. By Proposition 2.5, σ(x) = αyg/f for some y ∈ OF and
α ∈ F×q , a f -th root of unity, where f = gcd(g, q−1). If gcd(N, q−1) = 1,
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then f = 1, α = 1 and hence σ(x) = yg/f . If σ(x) is a positive, then
1 = α · sgn(y)g/f . Replacing y by y/ sgn(y), we also have σ(x) = yg/f .
Thus g|fφ(x), and so g|(N, fφ(x)).

3. Proof of Theorem 1.1

For any finite abelian group A, we denote by A` the Sylow `-subgroup
of A for any prime `. Let x ∈ CF, c ∈ ClF and N positive integer with
p - N be given. For any Q ∈ P(c, N), there is an ideal class dQ ∈ ClF
such that

(3.1) dN
Q

∏
σ∈G

σ−1(c)rσ(Q) = 1,

where the integers rσ(Q) satisfy srσ(Q)
Q ≡ σ(x) mod Q.

Proposition 3.1. Let ` be a prime number such that ` 6= p. Let
x ∈ CF and let `n be an exponent of (ClF)`. If c ∈ (ClF)`,Q ∈ P(c, `n)
and if rσ = rσ(Q), σ ∈ G, are integers satisfying srσ

Q ≡ σ(x) mod Q,

then % = %Q =
∑

σ∈G rσ(Q)σ−1 annihilates c.

Proof. Note that the integers rσ are uniquely determined modulo `n

because `n|Φ(q). Since c`n
= 1, (3.1) holds with N = `n. Since all

conjugates of c belong to (ClF)`, d`n

Q ∈ (ClF)`, and hence dQ ∈ (ClF)`

and d`n

Q = 1. Therefore c% = 1.

For any character χ of G, we define the idempotent element eχ as
follows:

eχ =
1
|G|

∑
σ∈G

Tr(χ(σ))σ−1 ∈ Q`[G],

where ”Tr” is the trace map from Q`(χ) := Q`(χ(σ) : σ ∈ G) to Q`.
Now assume that |G| is prime to `. Then eχ ∈ Z`[G] for all character χ
of G.

Since there is a Minkowski unit in O×
F , as in classical case, we have

Proposition 3.2. Suppose that ` - p|G|. Let χ be a nontrivial char-
acter of G and `n an exponent of (O×

F /CF)`. Let `aχ be the exact expo-

nent of the χ-part eχ(O×
F /CF)` of (O×

F /CF)`. Then there exists a positive

x ∈ eχ(CF/CF ∩ (O×
F )`n

) such that `aχ ||φ(x).

Lemma 3.3. Suppose θ ∈ eχZ/`nZ[G] and `a is the highest power
of ` dividing θ (0 ≤ a < n). Then `−aθeχZ/`nZ[G] = eχZ/`nZ[G]. In
particular, there exists θ′ ∈ eχZ/`nZ[G] such that `−aθθ′ = eχ.
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Proof. See the proof of Lemma 15.6 in [5].

Now we give the proof of Theorem 1.1. Let `n be an exponent of
(ClF)` and (O×

F /CF)`. Let c ∈ (ClF)`. For each Q ∈ P(c, `n), choose a
generator sQ of (A/q)×, where q = Q ∩ A, and define

ΨQ : CF/CF ∩ (O×
F )`n → Z/`nZ[G]

by ΨQ(x) =
∑

σ∈G rσσ
−1, where the integers rσ = rσ(Q) are uniquely

determined modulo `n and satisfy srσ
Q ≡ σ(x) mod Q. By Proposition

3.1, cΨQ(x) = 1 for all x ∈ CF/CF ∩ (O×
F )`n

. For any nontrivial character
χ of G, let Ψχ

Q : eχ(CF/CF ∩ (O×
F )`n

) → eχZ/`nZ[G] be the restriction
of ΨQ. Let `aχ be the exact exponent of eχ(O×

F /CF)`. There exists
a positive x ∈ eχ(CF/CF ∩ (O×

F )`n
) satisfying `aχ ||φ(x). If `e||(q − 1),

then g = g(x, c, `n, 1) divides `aχ+e. There exists Q ∈ P(c, `n) satisfying
Ψχ

Q(x) 6≡ 0 mod `aχ+e+1. For Q as above, let a′ be the minimal such that
Ψχ

Q(x) 6≡ 0 mod `a
′+1, so that a′ ≤ aχ + e. Then `−a′Ψχ

Q(x)Z/`nZ[G] =
eχZ/`nZ[G]. Thus Im(Ψχ

Q) ⊇ `a
′
eχZ/`nZ[G] ⊇ (q − 1)`aχeχZ/`nZ[G],

and so (q − 1)`aχeχ annihilates c. Since c ∈ (ClF)` is arbitrary, it proves
that (q − 1)`aχeχ annihilates (ClF)`. This is also true for the trivial
character χ0 because eχ0 is essentially the norm and ` - hk.

Now, suppose θ ∈ Z[G] annihilates (O×
F /CF)`. For any character χ,

θeχ annihilates eχ(O×
F /CF)`. Let `b be the maximal power of ` dividing

θeχ. There exists θ′ ∈ eχZ/`nZ[G] such that θeχθ′ = `beχ (by Lemma
3.3). Then `b annihilates eχ(O×

F /CF)`, and so b ≥ aχ. Thus, `aχ |θeχ and
(q − 1)θeχ annihilates (ClF)`. Since (q − 1)θ =

∑
χ(q − 1)θeχ, it follows

that (q − 1)θ annihilates (ClF)`.
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