JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 1, March 2009

THAINE'S THEOREM IN FUNCTION FIELD

Hwanyup Jung*

ABSTRACT. Let F be a finite real abelian extension of a global function field k with $G = \operatorname{Gal}(F/k)$. Assume that F is an extension field of the Hilbert class field $K_{\mathfrak{c}}$ of k and is contained in a cyclotomic function field $K_{\mathfrak{n}}$. Let ℓ be any prime number not dividing $ph_k|G|$. In this paper, we show that if $\theta \in \mathbb{Z}[G]$ annihilates the Sylow ℓ -subgroup of $\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}}$, then $(q-1)\theta$ annihilates the Sylow ℓ -subgroup of $\mathcal{C}l_{\mathrm{F}}$.

1. Introduction

Let F be a totally real abelian number field with $G = \operatorname{Gal}(F/\mathbb{Q})$. Let $\mathcal{O}_{\mathrm{F}}^{\times}$ be the group of global units of F, \mathcal{C}_{F} the group of cyclotomic units of F of conductor level and $\mathcal{C}l_{\mathrm{F}}$ the class group of F. Let p be a prime not dividing [F : \mathbb{Q}]. In [4], Thaine has shown the following remarkable result: If $\theta \in \mathbb{Z}[G]$ annihilates the Sylow p-subgroup of $\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}}$, then 2θ annihilates the Sylow p-subgroup of $\mathcal{C}l_{\mathrm{F}}$.

In this paper we consider the analogous problem in function fields. Let k be a global function field over the finite field \mathbb{F}_q with q elements of characteristic p. Fix a place ∞ of k of degree one and a sign function $\operatorname{sgn}: k_{\infty} \to \mathbb{F}_q$ with $\operatorname{sgn}(0) = 0$, where k_{∞} is the completion of k at ∞ . Let A be the Dedekind subring of k consisting of the functions regular away from ∞ . For any finite separable extension F of k, write \mathcal{O}_F for the integral closure of A in F and \mathcal{O}_F^{\times} be its group of units. Also write $\mathcal{C}l_F$ for the ideal class group of \mathcal{O}_F and $h_F = |\mathcal{C}l_F|$. In this paper we only consider finite abelian extension F of k contained in a cyclotomic function field of $(k, \infty, \operatorname{sgn})$. Let F be a finite real abelian extension of k, i.e., ∞ splits completely in F, with $G = \operatorname{Gal}(F/k)$. We assume that F contains the Hilbert class field of (k, ∞) . Let \mathcal{C}_F be the group

Received November 28, 2008; Accepted February 13, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R18, 11R29. Key words and phrases: class group, annihilator, function field.

This work was supported by the research grant of the Chungbuk National University in 2008.

Hwanyup Jung

of cyclotomic units of F in the sense of [1] (see the definition 2.2). The main result of this paper is

THEOREM 1.1. Let ℓ be a prime not dividing $\ell \nmid ph_k|G|$. If $\theta \in \mathbb{Z}[G]$ annihilates the Sylow ℓ -subgroup of $\mathcal{O}_F^{\times}/\mathcal{C}_F$, then $(q-1)\theta$ annihilates the Sylow ℓ -subgroup of $\mathcal{C}l_F$.

For any proper integral ideal of \mathfrak{n} of \mathbb{A} , we write $\Phi(\mathfrak{n}) = |(\mathbb{A}/\mathfrak{n})^{\times}|$ and denote by $K_{\mathfrak{n}}$ the cyclotomic function field of $(k, \infty, \operatorname{sgn})$ of conductor \mathfrak{n} . Moreover we write $K_{\mathfrak{e}}$ for the Hilbert class field of (k, ∞) . For details in the theory of sgn-normalized Drinfeld \mathbb{A} -module and cyclotomic function field over the global function field k, we refer the readers to [2] or [3].

2. Preliminary

2.1. Cyclotomic units

Let ρ be a fixed sgn-normalized Drinfeld A-module. For any proper ideal \mathfrak{n} of \mathbb{A} , we fix a primitive \mathfrak{n} -torsion point $\lambda_{\mathfrak{n}}$ of ρ .

LEMMA 2.1. Let $\mathfrak{n} = \mathfrak{p}\mathfrak{f}$, where $\mathfrak{f} \neq \mathfrak{e}$ and \mathfrak{p} is a prime ideal of \mathbb{A} . Then we have

$$N_{\mathrm{K}_{\mathfrak{n}}/\mathrm{K}_{\mathfrak{f}}}(\lambda_{\mathfrak{n}}) = \begin{cases} \rho_{\mathfrak{p}}(\lambda_{\mathfrak{n}}), & \text{if } \mathfrak{p}|\mathfrak{f}, \\ \rho_{\mathfrak{p}}(\lambda_{\mathfrak{n}})^{1-\sigma_{\mathfrak{p}}^{-1}}, & \text{if } \mathfrak{p} \nmid \mathfrak{f}, \end{cases}$$

where $\sigma_{\mathfrak{p}}$ denotes the Frobenius automorphism of \mathfrak{p} in $K_{\mathfrak{f}}$.

Let F be a finite real abelian extension of k. Let \mathfrak{m} be the conductor of F, i.e. $K_{\mathfrak{m}}$ is the smallest cyclotomic function field containing F. For each proper ideal \mathfrak{f} of \mathbb{A} , put $F_{\mathfrak{f}} = F \cap K_{\mathfrak{f}}$ and $\lambda_{\mathfrak{f},F} = N_{K_{\mathfrak{f}}/F_{\mathfrak{f}}}(\lambda_{\mathfrak{f}})$.

DEFINITION 2.2. Let \mathcal{D}_{F} be the *G*-submodule of F^{\times} generated by \mathbb{F}_{q}^{\times} and $\lambda_{\mathfrak{f},\mathrm{F}}$ with all $\mathfrak{f} \neq \mathfrak{e}$. We define $\mathcal{C}_{\mathrm{F}} := \mathcal{D}_{\mathrm{F}} \cap \mathcal{O}_{\mathrm{F}}^{\times}$, called the group of cyclotomic units of F.

As a *G*-module, \mathcal{D}_{F} is generated by $\mathbb{F}_{q}^{\times} \cup \{\lambda_{\mathfrak{f},\mathrm{F}} : \mathfrak{e} \neq \mathfrak{f}|\mathfrak{m}\} \cup \{N_{\mathrm{K}_{\mathfrak{p}}/\mathrm{K}_{\mathfrak{e}}}(\lambda_{\mathfrak{p}})\}_{\mathfrak{p}}$, where \mathfrak{p} runs over all prime ideals of \mathbb{A} such that $\mathfrak{p} \nmid \mathfrak{m}$.

For any prime ideal \mathfrak{q} of \mathbb{A} which splits completely in F, write $F(\mathfrak{q}) = F \cdot K_{\mathfrak{q}}$. Since all prime ideals of \mathcal{O}_F above \mathfrak{q} are totally ramified in $F(\mathfrak{q})$, G acts on the set of prime ideals of $\mathcal{O}_{F(\mathfrak{q})}$ above \mathfrak{q} .

PROPOSITION 2.3. For any unit $\varepsilon \in C_F$, there exists $u \in \mathcal{O}_{F(\mathfrak{q})}^{\times}$ such that $N_{F(\mathfrak{q})/F}(u) = 1$ and $u \equiv \varepsilon \mod \widetilde{\mathfrak{Q}}^{\sigma}$ for all $\sigma \in G$.

Proof. It suffices to show that for any $\varepsilon \in \mathbb{F}_q^{\times} \cup \{\lambda_{\mathfrak{f},\mathrm{F}} : \mathfrak{e} \neq \mathfrak{f}|\mathfrak{m}\} \cup \{N_{\mathrm{K}\mathfrak{p}/\mathrm{K}\mathfrak{e}}(\lambda_{\mathfrak{p}})\}_{\mathfrak{p}}$, where \mathfrak{p} runs over all prime ideals of \mathbb{A} such that $\mathfrak{p} \nmid \mathfrak{m}$ and $\mathfrak{p} \neq \mathfrak{q}$, there exists $u \in \mathcal{O}_{\mathrm{F}(\mathfrak{q})}^{\times}$ satisfying the required conditions. For $\varepsilon \in \mathbb{F}_q^{\times}$, it is easy to see that $u = \varepsilon$ satisfies the required ones. For $\varepsilon = \lambda_{\mathfrak{f},\mathrm{F}}$ with $\mathfrak{e} \neq \mathfrak{f}|\mathfrak{m}$, take $u = \prod_{\tau \in \mathrm{Gal}(\mathrm{K}\mathfrak{f}/\mathrm{F}\mathfrak{f})}(\lambda_{\mathfrak{f}}^{\tau} + \lambda_{\mathfrak{q}})$. Then $u \in \mathrm{F}\mathfrak{f}(\mathfrak{q}) \subset \mathrm{F}(\mathfrak{q})$, and so $u \in \mathcal{O}_{\mathrm{F}(\mathfrak{q})}^{\times}$. Since $N_{\mathrm{F}(\mathfrak{q})/\mathrm{F}}(u) = N_{\mathrm{K}\mathfrak{f}\mathfrak{q}/\mathrm{K}\mathfrak{f}}(u)$, we have

$$N_{\mathrm{F}(\mathfrak{q})/\mathrm{F}}(u) = \prod_{\tau \in \mathrm{Gal}(\mathrm{K}_{\mathfrak{f}}/\mathrm{F}_{\mathfrak{f}})} \left(\frac{\rho_{\mathfrak{q}}(\lambda_{\mathfrak{f}}^{\tau})}{\lambda_{\mathfrak{f}}^{\tau}} \right) = N_{\mathrm{K}_{\mathfrak{f}}/\mathrm{F}_{\mathfrak{f}}}(\lambda_{\mathfrak{f}})^{\sigma_{\mathfrak{q}}-1} = 1.$$

Since $\lambda_{\mathfrak{q}}$ is contained in $\widetilde{\mathfrak{Q}}^{\sigma}$ for all $\sigma \in G$, $u \equiv \prod_{\tau \in \operatorname{Gal}(\mathrm{K}_{\mathfrak{f}}/\mathrm{F}_{\mathfrak{f}})} \lambda_{\mathfrak{f}}^{\tau} = \lambda_{\mathfrak{f},\mathrm{F}} \mod \widetilde{\mathfrak{Q}}^{\sigma}$. For $\varepsilon = N_{\mathrm{K}_{\mathfrak{p}}/\mathrm{K}_{\mathfrak{e}}}(\lambda_{\mathfrak{p}})$ with $\mathfrak{p} \nmid \mathfrak{m}, \mathfrak{p} \neq \mathfrak{q}$, similar as above, we can show that $u = \prod_{\tau \in \operatorname{Gal}(\mathrm{K}_{\mathfrak{p}}/\mathrm{K}_{\mathfrak{e}})} (\lambda_{\mathfrak{p}}^{\tau} + \lambda_{\mathfrak{q}})$ satisfies the required ones.

Fix a generator s of $(\mathbb{A}/\mathfrak{q})^{\times}$ and let $\tau \in \operatorname{Gal}(\mathrm{F}(\mathfrak{q})/\mathrm{F})$ be the automorphism such that $\tau(\lambda_{\mathfrak{q}}) = \rho_s(\lambda_{\mathfrak{q}})$. Let u be a unit in Lemma 2.3 and choose $w \in \mathrm{F}(\mathfrak{q})$ satisfying $w^{\tau} = uw$. Then we have $(w) = \mathfrak{D} \prod_{\sigma \in G} (\widetilde{\mathfrak{Q}}^{\sigma^{-1}})^{r_{\sigma}}$, where \mathfrak{D} is the lift of an ideal of \mathcal{O}_{F} relatively prime to \mathfrak{q} and $r_{\sigma} \in \mathbb{Z}$. As in classical case, r_{σ} is determined uniquely modulo $\Phi(\mathfrak{q})$ by $s^{r_{\sigma}} \equiv \sigma(\varepsilon) \mod \mathfrak{Q}$.

2.2. Applications of Tchebotarev density theorem

Given ideal class $\underline{\mathbf{c}}$ of \mathcal{O}_{F} and a positive integer N, we define $\mathbf{P}(\underline{\mathbf{c}}, N)$ as the set of prime ideals \mathfrak{Q} belonging to $\underline{\mathbf{c}}$ and lying above a prime ideal \mathfrak{q} of \mathbb{A} which splits completely in \mathbb{F} and $\Phi(\mathbf{q}) \equiv 0 \mod N$. By using the Tchebotarev density theorem ([3, Theorem 9.13 A]), we can show that if N is a positive integer with $p \nmid N$, then $\mathbf{P}(\underline{\mathbf{c}}, N)$ is an infinite set.

LEMMA 2.4. For any nonconstant $z \in \mathbf{k}_{\infty}^{\times}$ and a positive integer c prime to p, $\mathbf{k}_{\infty}(\sqrt[c]{z})$ is a totally ramified extension over \mathbf{k}_{∞} .

Proof. It is an easy consequence of local class field theory.

PROPOSITION 2.5. Let N and c be positive integers with c|N and $p \nmid N$. Let x be a nonconstant element of \mathcal{O}_{F} . Suppose that for all (except possibly a finite set) of the prime ideals $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$, there exists $y_{\mathfrak{Q}} \in \mathcal{O}_{\mathrm{F}}$ such that $x \equiv y_{\mathfrak{Q}}^{c} \mod \mathfrak{Q}$. Then $x = \alpha y^{c/f}$ for some $y \in \mathcal{O}_{\mathrm{F}}$ and $\alpha \in \mathbb{F}_{q}^{*}$, a f-th root of unity, where $f = \gcd(c, q - 1)$.

Hwanyup Jung

Proof. Fix $\zeta_c \in \overline{\mathbb{F}}_q$ a primitive c-th root of unity and let $\sqrt[c]{x}$ be a fixed c-th root of x. By Lemma 2.4, $F(\sqrt[c]{x})/F$ is a geometric extension and $F \cap F(\sqrt[c]{x}) = F$, where $F = F(\zeta_c)$. Let L be the Galois closure of $F(\sqrt[c]{x})$ over F. Clearly, $L \subseteq F(\sqrt[c]{x})$. Let $F' = \mathbb{F}_{d^d}F \subseteq F$, where $d = [L : F(\sqrt[c]{x})]$. Since $F(\sqrt[6]{x})/F$ is a geometric extension, $L = F'F(\sqrt[6]{x}) = F'(\sqrt[6]{x}), \widetilde{F} \cap L =$ F' and F' \cap F($\sqrt[c]{x}$) = F. Let $f = \gcd(c, q^d - 1)$ and $\zeta_f = (\zeta_c)^{c/f}$. Clearly, $F(\zeta_f) \subseteq F'$. Let Q(X) be the irreducible polynomial of $\sqrt[n]{x}$ over F. Then $Q(X) = \prod_{i \in J} (X - \zeta_c^j \sqrt[c]{x})$, where J is a subset of $\{1, 2, \dots, c\}$ and $\zeta_c^j \in \mathbb{F}_{q^d}$ for all $j \in J$. It is easy to see that $\zeta_c^j \in \mathbb{F}_{q^d}$ if and only if j divides c/f. Hence $Q(X) = \prod_{j \in J^*} (X - \zeta_f^j \sqrt[c]{x})$ for some $J^* \subseteq \{1, 2, \dots, f\}$. Since $L = F'F(\sqrt[c]{x})$ and $F' \cap F(\sqrt[c]{x}) = F$, Q(X) is also the irreducible irreducible polynomial of $\sqrt[c]{x}$ over F'. Since $L = F(\sqrt[c]{x}, \zeta_f^j : j \in J^*) \subseteq$ $F(\sqrt[c]{x},\zeta_f) \subseteq F'(\sqrt[c]{x}) = L$, we have $L = F(\sqrt[c]{x},\zeta_f)$ and $F' = F(\zeta_f)$. Note that L/F' is a finite Galois extension and let $\Gamma = Gal(L/F')$. Let \mathcal{U}_f be the group of f-th roots of unity in $\overline{\mathbb{F}}_q$. Since $Q(X) = \prod_{\sigma \in \Gamma} (X - \sigma(\sqrt[q]{x}))$, $(\sqrt[\sigma]{x})^{\sigma-1} \in \mathcal{U}_f$ for all $\sigma \in \Gamma$. Let $\psi : \Gamma \to \mathcal{U}_f$ be the homomorphism defined by $\psi(\sigma) = (\sqrt[c]{x})^{\sigma-1}$. Then $\operatorname{Im}(\psi) = \langle \zeta_{f_0} \rangle$ for some $f_0|f$, and so $Q(X) = \prod_{j=1}^{f_0} (X - \zeta_{f_0}^j \sqrt[c]{x})$. Now we can follow the same argument as in the classical case for the rest of proof.

For each nonconstant unit $x \in \mathcal{O}_{\mathrm{F}}^{\times}$, we define the number $\phi(x)$ as the greatest positive integer n such that $x = u^n$ for some $u \in \mathrm{F}$. Clearly, $\phi(\sigma(x)) = \phi(x)$ for all $\sigma \in G$. Fix a triple $(x, \underline{\mathfrak{c}}, N)$, where $x \in \mathcal{C}_{\mathrm{F}}$, $\underline{\mathfrak{c}}$ an ideal class and N a positive integer with $p \nmid N$. For each $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$, let $s_{\mathfrak{Q}}$ be a fixed generator of $(\mathbb{A}/\mathfrak{q})^{\times}$, where $\mathfrak{q} = \mathfrak{Q} \cap \mathbb{A}$. Then there exists a nonzero fractional ideal $\mathfrak{D}_{\mathfrak{Q}}$ of \mathcal{O}_{F} such that $\mathfrak{D}_{\mathfrak{Q}}^{N} \prod_{\sigma \in G} (\mathfrak{Q}^{\sigma^{-1}})^{r_{\sigma}(\mathfrak{Q})}$ is a principal ideal, where the integers $r_{\sigma}(\mathfrak{Q})$ satisfy $s_{\mathfrak{Q}}^{r_{\sigma}(\mathfrak{Q})} \equiv \sigma(x) \mod \mathfrak{Q}$. Let $\sigma \in G$ be fixed. We define $g = g(x, \underline{\mathfrak{c}}, N, \sigma)$ as the greatest common divisor of N and of all the $r_{\sigma}(\mathfrak{Q})$ such that $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$.

Fix an embedding of F into k_{∞} . We call $x \in F$ positive if sgn(x) = 1.

THEOREM 2.6. Given $x \in C_{\rm F} \setminus \mathbb{F}_q^{\times}, \underline{\mathfrak{c}}$ an ideal class of $\mathcal{O}_{\rm F}$, N a positive integer with $p \nmid N$ and $\sigma \in G$, let $g = g(x, \underline{\mathfrak{c}}, N, \sigma)$. If gcd(N, q - 1) = 1 or $\sigma(x)$ is a positive, then we have $gcd(N, \phi(x))|g|gcd(N, f\phi(x))$, where f = gcd(g, q - 1).

Proof. As in classical case, it can be shown easily that $gcd(N, \phi(x))$ divides g. For any $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$, there exists $y_{\mathfrak{Q}} \in \mathbb{A}$ such that $\sigma(x) \equiv y_{\mathfrak{Q}}^g \mod \mathfrak{Q}$. By Proposition 2.5, $\sigma(x) = \alpha y^{g/f}$ for some $y \in \mathcal{O}_{\mathrm{F}}$ and $\alpha \in \mathbb{F}_q^{\times}$, a f-th root of unity, where $f = \gcd(g, q-1)$. If $\gcd(N, q-1) = 1$,

then $f = 1, \alpha = 1$ and hence $\sigma(x) = y^{g/f}$. If $\sigma(x)$ is a positive, then $1 = \alpha \cdot \operatorname{sgn}(y)^{g/f}$. Replacing y by $y/\operatorname{sgn}(y)$, we also have $\sigma(x) = y^{g/f}$. Thus $g|f\phi(x)$, and so $g|(N, f\phi(x))$.

3. Proof of Theorem 1.1

For any finite abelian group A, we denote by A_{ℓ} the Sylow ℓ -subgroup of A for any prime ℓ . Let $x \in C_{\mathrm{F}}, \underline{\mathfrak{c}} \in \mathcal{C}l_{\mathrm{F}}$ and N positive integer with $p \nmid N$ be given. For any $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$, there is an ideal class $\underline{\mathfrak{d}}_{\mathfrak{Q}} \in \mathcal{C}l_{\mathrm{F}}$ such that

(3.1)
$$\underline{\mathfrak{d}}_{\mathfrak{Q}}^{N} \prod_{\sigma \in G} \sigma^{-1}(\underline{\mathfrak{c}})^{r_{\sigma}(\mathfrak{Q})} = 1$$

where the integers $r_{\sigma}(\mathfrak{Q})$ satisfy $s_{\mathfrak{Q}}^{r_{\sigma}(\mathfrak{Q})} \equiv \sigma(x) \mod \mathfrak{Q}$.

PROPOSITION 3.1. Let ℓ be a prime number such that $\ell \neq p$. Let $x \in C_{\rm F}$ and let ℓ^n be an exponent of $(Cl_{\rm F})_{\ell}$. If $\underline{\mathfrak{c}} \in (Cl_{\rm F})_{\ell}, \mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, \ell^n)$ and if $r_{\sigma} = r_{\sigma}(\mathfrak{Q}), \sigma \in G$, are integers satisfying $s_{\mathfrak{Q}}^{r_{\sigma}} \equiv \sigma(x) \mod \mathfrak{Q}$, then $\varrho = \varrho_{\mathfrak{Q}} = \sum_{\sigma \in G} r_{\sigma}(\mathfrak{Q}) \sigma^{-1}$ annihilates $\underline{\mathfrak{c}}$.

Proof. Note that the integers r_{σ} are uniquely determined modulo ℓ^n because $\ell^n | \Phi(\mathfrak{q})$. Since $\mathfrak{c}^{\ell^n} = 1$, (3.1) holds with $N = \ell^n$. Since all conjugates of \mathfrak{c} belong to $(\mathcal{C}l_{\mathrm{F}})_{\ell}$, $\mathfrak{d}_{\mathfrak{Q}}^{\ell^n} \in (\mathcal{C}l_{\mathrm{F}})_{\ell}$, and hence $\mathfrak{d}_{\mathfrak{Q}} \in (\mathcal{C}l_{\mathrm{F}})_{\ell}$ and $\mathfrak{d}_{\mathfrak{Q}}^{\ell^n} = 1$. \Box

For any character χ of G, we define the idempotent element e_{χ} as follows:

$$e_{\chi} = \frac{1}{|G|} \sum_{\sigma \in G} \operatorname{Tr}(\chi(\sigma)) \sigma^{-1} \in \mathbb{Q}_{\ell}[G],$$

where "Tr" is the trace map from $\mathbb{Q}_{\ell}(\chi) := \mathbb{Q}_{\ell}(\chi(\sigma) : \sigma \in G)$ to \mathbb{Q}_{ℓ} . Now assume that |G| is prime to ℓ . Then $e_{\chi} \in \mathbb{Z}_{\ell}[G]$ for all character χ of G.

Since there is a Minkowski unit in $\mathcal{O}_{\mathrm{F}}^{\times}$, as in classical case, we have

PROPOSITION 3.2. Suppose that $\ell \nmid p|G|$. Let χ be a nontrivial character of G and ℓ^n an exponent of $(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. Let $\ell^{a_{\chi}}$ be the exact exponent of the χ -part $e_{\chi}(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$ of $(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. Then there exists a positive $x \in e_{\chi}(\mathcal{C}_{\mathrm{F}}/\mathcal{C}_{\mathrm{F}} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^{\ell^n})$ such that $\ell^{a_{\chi}} ||\phi(x)$.

LEMMA 3.3. Suppose $\theta \in e_{\chi}\mathbb{Z}/\ell^n\mathbb{Z}[G]$ and ℓ^a is the highest power of ℓ dividing θ ($0 \leq a < n$). Then $\ell^{-a}\theta e_{\chi}\mathbb{Z}/\ell^n\mathbb{Z}[G] = e_{\chi}\mathbb{Z}/\ell^n\mathbb{Z}[G]$. In particular, there exists $\theta' \in e_{\chi}\mathbb{Z}/\ell^n\mathbb{Z}[G]$ such that $\ell^{-a}\theta\theta' = e_{\chi}$. Hwanyup Jung

Proof. See the proof of Lemma 15.6 in [5].

Now we give the proof of Theorem 1.1. Let ℓ^n be an exponent of $(\mathcal{C}l_{\mathrm{F}})_{\ell}$ and $(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. Let $\underline{\mathfrak{c}} \in (\mathcal{C}l_{\mathrm{F}})_{\ell}$. For each $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, \ell^n)$, choose a generator $s_{\mathfrak{Q}}$ of $(\mathbb{A}/\mathfrak{q})^{\times}$, where $\mathfrak{q} = \mathfrak{Q} \cap \mathbb{A}$, and define

$$\Psi_{\mathfrak{Q}}: \mathcal{C}_{\mathrm{F}}/\mathcal{C}_{\mathrm{F}} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^{\ell^{n}} \to \mathbb{Z}/\ell^{n}\mathbb{Z}[G]$$

by $\Psi_{\mathfrak{Q}}(x) = \sum_{\sigma \in G} r_{\sigma} \sigma^{-1}$, where the integers $r_{\sigma} = r_{\sigma}(\mathfrak{Q})$ are uniquely determined modulo ℓ^n and satisfy $s_{\mathfrak{Q}}^{r_{\sigma}} \equiv \sigma(x) \mod \mathfrak{Q}$. By Proposition $3.1, \mathfrak{c}^{\Psi_{\mathfrak{Q}}(x)} = 1$ for all $x \in \mathcal{C}_{\mathrm{F}}/\mathcal{C}_{\mathrm{F}} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^{\ell^n}$. For any nontrivial character χ of G, let $\Psi_{\mathfrak{Q}}^{\chi} : e_{\chi}(\mathcal{C}_{\mathrm{F}}/\mathcal{C}_{\mathrm{F}} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^{\ell^n}) \to e_{\chi}\mathbb{Z}/\ell^n\mathbb{Z}[G]$ be the restriction of $\Psi_{\mathfrak{Q}}$. Let $\ell^{a_{\chi}}$ be the exact exponent of $e_{\chi}(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. There exists a positive $x \in e_{\chi}(\mathcal{C}_{\mathrm{F}}/\mathcal{C}_{\mathrm{F}} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^{\ell^n})$ satisfying $\ell^{a_{\chi}}||\phi(x)$. If $\ell^e||(q-1)$, then $g = g(x,\mathfrak{c},\ell^n,1)$ divides $\ell^{a_{\chi}+e}$. There exists $\mathfrak{Q} \in \mathbf{P}(\mathfrak{c},\ell^n)$ satisfying $\Psi_{\mathfrak{Q}}^{\chi}(x) \neq 0 \mod \ell^{a'_{\chi}+e+1}$. For \mathfrak{Q} as above, let a' be the minimal such that $\Psi_{\mathfrak{Q}}^{\chi}(x) \neq 0 \mod \ell^{a'_{\chi}+e+1}$. For \mathfrak{Q} as above, let a' be the minimal such that $\Psi_{\mathfrak{Q}}^{\chi}(x) \neq 0 \mod \ell^{a'_{\chi}+e+1}$. For \mathfrak{Q} as above, let a' be the minimal such that $\Psi_{\mathfrak{Q}}^{\chi}(x) \neq 0 \mod \ell^{a'_{\chi}+e_{\chi}}$ annihilates \mathfrak{c} . Since $\mathfrak{c} \in (\mathcal{C}l_{\mathrm{F}})_{\ell}$ is arbitrary, it proves that $(q-1)\ell^{a_{\chi}}e_{\chi}$ annihilates $(\mathcal{C}l_{\mathrm{F}})_{\ell}$. This is also true for the trivial character χ_0 because e_{χ_0} is essentially the norm and $\ell \nmid h_{\mathrm{k}}$.

Now, suppose $\theta \in \mathbb{Z}[G]$ annihilates $(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. For any character χ , θe_{χ} annihilates $e_{\chi}(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$. Let ℓ^{b} be the maximal power of ℓ dividing θe_{χ} . There exists $\theta' \in e_{\chi}\mathbb{Z}/\ell^{n}\mathbb{Z}[G]$ such that $\theta e_{\chi}\theta' = \ell^{b}e_{\chi}$ (by Lemma 3.3). Then ℓ^{b} annihilates $e_{\chi}(\mathcal{O}_{\mathrm{F}}^{\times}/\mathcal{C}_{\mathrm{F}})_{\ell}$, and so $b \geq a_{\chi}$. Thus, $\ell^{a_{\chi}}|\theta e_{\chi}$ and $(q-1)\theta e_{\chi}$ annihilates $(\mathcal{C}l_{\mathrm{F}})_{\ell}$. Since $(q-1)\theta = \sum_{\chi}(q-1)\theta e_{\chi}$, it follows that $(q-1)\theta$ annihilates $(\mathcal{C}l_{\mathrm{F}})_{\ell}$.

References

- J. Ahn, S. Bae and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields. Trans. Amer. Math. Soc. 355 (2003), 1803-1818.
- [2] D. Hayes, A brief introduction to Drinfeld modules. The arithmetic of function fields (Columbus, OH, 1991), 1–32.
- [3] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
- [4] F. Thaine, On the ideal class groups of real abelian number fields. Ann. of Math.
 (2) 128 (1988), 1–18.
- [5] L. Washington, Introduction to cyclotomic fields. Second edition. GTM 83. Springer-Verlag, New York, (1997).

22

Thaine's theorem in function field

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr