THAINE'S THEOREM IN FUNCTION FIELD

Hwanyup Jung*

Abstract

Let F be a finite real abelian extension of a global function field k with $G=\operatorname{Gal}(\mathrm{F} / \mathrm{k})$. Assume that F is an extension field of the Hilbert class field $\mathrm{K}_{\mathfrak{e}}$ of k and is contained in a cyclotomic function field K_{n}. Let ℓ be any prime number not dividing $p h_{\mathrm{k}}|G|$. In this paper, we show that if $\theta \in \mathbb{Z}[G]$ annihilates the Sylow ℓ subgroup of $\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}$, then $(q-1) \theta$ annihilates the Sylow ℓ-subgroup of $\mathcal{C} l_{\mathrm{F}}$.

1. Introduction

Let F be a totally real abelian number field with $G=\operatorname{Gal}(\mathrm{F} / \mathbb{Q})$. Let $\mathcal{O}_{\mathrm{F}}^{\times}$be the group of global units of $\mathrm{F}, \mathcal{C}_{\mathrm{F}}$ the group of cyclotomic units of F of conductor level and $\mathcal{C} l_{\mathrm{F}}$ the class group of F . Let p be a prime not dividing $[F: \mathbb{Q}]$. In [4], Thaine has shown the following remarkable result: If $\theta \in \mathbb{Z}[G]$ annihilates the Sylow p-subgroup of $\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}$, then 2θ annihilates the Sylow p-subgroup of $\mathcal{C} l_{\mathrm{F}}$.

In this paper we consider the analogous problem in function fields. Let k be a global function field over the finite field \mathbb{F}_{q} with q elements of characteristic p. Fix a place ∞ of k of degree one and a sign function $\operatorname{sgn}: \mathrm{k}_{\infty} \rightarrow \mathbb{F}_{q}$ with $\operatorname{sgn}(0)=0$, where k_{∞} is the completion of k at ∞. Let \mathbb{A} be the Dedekind subring of k consisting of the functions regular away from ∞. For any finite separable extension F of k , write \mathcal{O}_{F} for the integral closure of \mathbb{A} in F and $\mathcal{O}_{\mathrm{F}}^{\times}$be its group of units. Also write $\mathcal{C} l_{\mathrm{F}}$ for the ideal class group of \mathcal{O}_{F} and $h_{\mathrm{F}}=\left|\mathcal{C} l_{\mathrm{F}}\right|$. In this paper we only consider finite abelian extension F of k contained in a cyclotomic function field of $(\mathrm{k}, \infty, \operatorname{sgn})$. Let F be a finite real abelian extension of k , i.e., ∞ splits completely in F , with $G=\operatorname{Gal}(\mathrm{F} / \mathrm{k})$. We assume that F contains the Hilbert class field of (k, ∞). Let \mathcal{C}_{F} be the group

[^0]of cyclotomic units of F in the sense of [1] (see the definition 2.2). The main result of this paper is

Theorem 1.1. Let ℓ be a prime not dividing $\ell \nmid p h_{\mathrm{k}}|G|$. If $\theta \in \mathbb{Z}[G]$ annihilates the Sylow ℓ-subgroup of $\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}$, then $(q-1) \theta$ annihilates the Sylow ℓ-subgroup of $\mathcal{C} l_{\mathrm{F}}$.

For any proper integral ideal of \mathfrak{n} of \mathbb{A}, we write $\Phi(\mathfrak{n})=\left|(\mathbb{A} / \mathfrak{n})^{\times}\right|$and denote by $K_{\mathfrak{n}}$ the cyclotomic function field of ($k, \infty, \operatorname{sgn}$) of conductor \mathfrak{n}. Moreover we write K_{e} for the Hilbert class field of (k, ∞). For details in the theory of sgn-normalized Drinfeld \mathbb{A}-module and cyclotomic function field over the global function field k , we refer the readers to [2] or [3].

2. Preliminary

2.1. Cyclotomic units

Let ρ be a fixed sgn-normalized Drinfeld \mathbb{A}-module. For any proper ideal \mathfrak{n} of \mathbb{A}, we fix a primitive \mathfrak{n}-torsion point $\lambda_{\mathfrak{n}}$ of ρ.

Lemma 2.1. Let $\mathfrak{n}=\mathfrak{p f}$, where $\mathfrak{f} \neq \mathfrak{e}$ and \mathfrak{p} is a prime ideal of \mathbb{A}. Then we have

$$
N_{\mathrm{K}_{\mathfrak{n}} / K_{\mathfrak{f}}}\left(\lambda_{\mathfrak{n}}\right)= \begin{cases}\rho_{\mathfrak{p}}\left(\lambda_{\mathfrak{n}}\right), & \text { if } \mathfrak{p} \mid \mathfrak{f}, \\ \rho_{\mathfrak{p}}\left(\lambda_{\mathfrak{n}}\right)^{1-\sigma_{\mathfrak{p}}^{-1}}, & \text { if } \mathfrak{p} \nmid \mathfrak{f},\end{cases}
$$

where $\sigma_{\mathfrak{p}}$ denotes the Frobenius automorphism of \mathfrak{p} in $\mathrm{K}_{\mathfrak{f}}$.
Let F be a finite real abelian extension of k . Let \mathfrak{m} be the conductor of F , i.e. $\mathrm{K}_{\mathfrak{m}}$ is the smallest cyclotomic function field containing F . For each proper ideal \mathfrak{f} of \mathbb{A}, put $\mathrm{F}_{\mathfrak{f}}=\mathrm{F} \cap \mathrm{K}_{\mathfrak{f}}$ and $\lambda_{\mathfrak{f}, \mathrm{F}}=N_{\mathrm{K}_{\mathfrak{f}} / \mathrm{F}_{\mathfrak{f}}}\left(\lambda_{\mathfrak{f}}\right)$.

Definition 2.2. Let \mathcal{D}_{F} be the G-submodule of F^{\times}generated by \mathbb{F}_{q}^{\times} and $\lambda_{\mathrm{f}, \mathrm{F}}$ with all $\mathfrak{f} \neq \mathfrak{e}$. We define $\mathcal{C}_{\mathrm{F}}:=\mathcal{D}_{\mathrm{F}} \cap \mathcal{O}_{\mathrm{F}}^{\times}$, called the group of cyclotomic units of F .

As a G-module, \mathcal{D}_{F} is generated by $\mathbb{F}_{q}^{\times} \cup\left\{\lambda_{\mathfrak{f}, \mathrm{F}}: \mathfrak{e} \neq \mathfrak{f} \mid \mathfrak{m}\right\} \cup\left\{N_{\mathrm{K}_{\mathfrak{p}} / \mathrm{K}_{\mathfrak{e}}}\left(\lambda_{\mathfrak{p}}\right)\right\}_{\mathfrak{p}}$, where \mathfrak{p} runs over all prime ideals of \mathbb{A} such that $\mathfrak{p} \nmid \mathfrak{m}$.

For any prime ideal \mathfrak{q} of \mathbb{A} which splits completely in F, write $F(\mathfrak{q})=$ $\mathrm{F} \cdot \mathrm{K}_{\mathfrak{q}}$. Since all prime ideals of \mathcal{O}_{F} above \mathfrak{q} are totally ramified in $\mathrm{F}(\mathfrak{q})$, G acts on the set of prime ideals of $\mathcal{O}_{\mathrm{F}(\mathfrak{q})}$ above \mathfrak{q}.

Proposition 2.3. For any unit $\varepsilon \in \mathcal{C}_{\mathrm{F}}$, there exists $u \in \mathcal{O}_{\mathrm{F}(\mathfrak{q})}^{\times}$such that $N_{\mathrm{F}(\mathfrak{q}) / \mathrm{F}}(u)=1$ and $u \equiv \varepsilon \bmod \widetilde{\mathfrak{Q}}^{\sigma}$ for all $\sigma \in G$.

Proof. It suffices to show that for any $\varepsilon \in \mathbb{F}_{q}^{\times} \cup\left\{\lambda_{\mathfrak{f}, \mathrm{F}}: \mathfrak{e} \neq \mathfrak{f} \mid \mathfrak{m}\right\} \cup$ $\left\{N_{\mathrm{K}_{\mathfrak{p}} / \mathrm{K}_{\mathfrak{c}}}\left(\lambda_{\mathfrak{p}}\right)\right\}_{\mathfrak{p}}$, where \mathfrak{p} runs over all prime ideals of \mathbb{A} such that $\mathfrak{p} \nmid \mathfrak{m}$ and $\mathfrak{p} \neq \mathfrak{q}$, there exists $u \in \mathcal{O}_{\mathrm{F}(\mathfrak{q})}^{\times}$satisfying the required conditions. For $\varepsilon \in \mathbb{F}_{q}^{\times}$, it is easy to see that $u=\varepsilon$ satisfies the required ones. For $\varepsilon=\lambda_{f, F}$ with $\mathfrak{e} \neq \mathfrak{f} \mid \mathfrak{m}$, take $u=\prod_{\tau \in \operatorname{Gal}\left(\mathrm{K}_{\mathfrak{f}} / \mathrm{F}_{\mathfrak{f}}\right)}\left(\lambda_{\mathfrak{f}}^{\tau}+\lambda_{\mathfrak{q}}\right)$. Then $u \in \mathrm{~F}_{\mathfrak{f}}(\mathfrak{q}) \subset \mathrm{F}(\mathfrak{q})$, and so $u \in \mathcal{O}_{\mathrm{F}(\mathfrak{q})}^{\times}$. Since $N_{\mathrm{F}(\mathfrak{q}) / \mathrm{F}}(u)=N_{\mathrm{K}_{\mathfrak{f} q} / \mathrm{K}_{\mathfrak{f}}}(u)$, we have

$$
N_{\mathrm{F}(\mathfrak{q}) / \mathrm{F}}(u)=\prod_{\tau \in \operatorname{Gal}\left(\mathrm{K}_{\mathrm{f}} / \mathrm{F}_{\mathfrak{f}}\right)}\left(\frac{\rho_{\mathfrak{q}}\left(\lambda_{\mathrm{f}}^{\tau}\right)}{\lambda_{\mathrm{f}}^{\tau}}\right)=N_{\mathrm{K}_{\mathrm{f}} / \mathrm{F}_{\mathrm{f}}}\left(\lambda_{\mathrm{f}}\right)^{\sigma_{\mathfrak{q}}-1}=1 .
$$

Since $\lambda_{\mathfrak{q}}$ is contained in $\tilde{\mathfrak{Q}}^{\sigma}$ for all $\sigma \in G, u \equiv \prod_{\tau \in \operatorname{Gal}\left(\mathrm{K}_{\mathfrak{f}} / \mathrm{F}_{\mathfrak{f}}\right)} \lambda_{f}^{\tau}=$ $\lambda_{\mathfrak{f}, \mathrm{F}} \bmod \widetilde{\mathfrak{Q}}^{\sigma}$. For $\varepsilon=N_{\mathrm{K}_{\mathfrak{p}} / \mathrm{K}_{\mathfrak{e}}}\left(\lambda_{\mathfrak{p}}\right)$ with $\mathfrak{p} \nmid \mathfrak{m}, \mathfrak{p} \neq \mathfrak{q}$, similar as above, we can show that $u=\prod_{\tau \in \operatorname{Gal}\left(K_{\mathfrak{p}} / \mathrm{K}_{\mathfrak{e}}\right)}\left(\lambda_{\mathfrak{p}}^{\tau}+\lambda_{\mathfrak{q}}\right)$ satisfies the required ones.

Fix a generator s of $(\mathbb{A} / \mathfrak{q})^{\times}$and let $\tau \in \operatorname{Gal}(\mathrm{F}(\mathfrak{q}) / \mathrm{F})$ be the automorphism such that $\tau\left(\lambda_{\mathfrak{q}}\right)=\rho_{s}\left(\lambda_{\mathfrak{q}}\right)$. Let u be a unit in Lemma 2.3 and choose $w \in \mathrm{~F}(\mathfrak{q})$ satisfying $w^{\tau}=u w$. Then we have $(w)=$ $\mathfrak{D} \prod_{\sigma \in G}\left(\widetilde{\mathfrak{Q}}^{\sigma^{-1}}\right)^{r_{\sigma}}$, where \mathfrak{D} is the lift of an ideal of \mathcal{O}_{F} relatively prime to \mathfrak{q} and $r_{\sigma} \in \mathbb{Z}$. As in classical case, r_{σ} is determined uniquely modulo $\Phi(\mathfrak{q})$ by $s^{r_{\sigma}} \equiv \sigma(\varepsilon) \bmod \mathfrak{Q}$.

2.2. Applications of Tchebotarev density theorem

Given ideal class $\underline{\mathfrak{c}}$ of \mathcal{O}_{F} and a positive integer N, we define $\mathbf{P}(\underline{\mathfrak{c}}, N)$ as the set of prime ideals \mathfrak{Q} belonging to $\underline{\mathfrak{c}}$ and lying above a prime ideal \mathfrak{q} of \mathbb{A} which splits completely in F and $\Phi(\mathfrak{q}) \equiv 0 \bmod N$. By using the Tchebotarev density theorem ([3, Theorem 9.13 A$]$), we can show that if N is a positive integer with $p \nmid N$, then $\mathbf{P}(\underline{c}, N)$ is an infinite set.

Lemma 2.4. For any nonconstant $z \in \mathrm{k}_{\infty}^{\times}$and a positive integer c prime to $p, \mathrm{k}_{\infty}(\sqrt[c]{z})$ is a totally ramified extension over k_{∞}.

Proof. It is an easy consequence of local class field theory.
Proposition 2.5. Let N and c be positive integers with $c \mid N$ and $p \nmid N$. Let x be a nonconstant element of \mathcal{O}_{F}. Suppose that for all (except possibly a finite set) of the prime ideals $\mathfrak{Q} \in \mathbf{P}(\mathfrak{c}, N)$, there exists $y_{\mathfrak{Q}} \in \mathcal{O}_{\mathrm{F}}$ such that $x \equiv y_{\mathfrak{Q}}^{c} \bmod \mathfrak{Q}$. Then $x=\alpha y^{c / f}$ for some $y \in \mathcal{O}_{\mathrm{F}}$ and $\alpha \in \mathbb{F}_{q}^{*}$, a f-th root of unity, where $f=\operatorname{gcd}(c, q-1)$.

Proof. Fix $\zeta_{c} \in \overline{\mathbb{F}}_{q}$ a primitive c-th root of unity and let $\sqrt[c]{x}$ be a fixed c-th root of x. By Lemma 2.4, $\mathrm{F}(\sqrt[c]{x}) / \mathrm{F}$ is a geometric extension and $\widetilde{\mathrm{F}} \cap \mathrm{F}(\sqrt[c]{x})=\mathrm{F}$, where $\widetilde{\mathrm{F}}=\mathrm{F}\left(\zeta_{c}\right)$. Let L be the Galois closure of $\mathrm{F}(\sqrt[c]{x})$ over F. Clearly, $\mathrm{L} \subseteq \widetilde{\mathrm{F}}(\sqrt[c]{x})$. Let $\mathrm{F}^{\prime}=\mathbb{F}_{q^{d}} \mathrm{~F} \subseteq \widetilde{\mathrm{~F}}$, where $d=[\mathrm{L}: \mathrm{F}(\sqrt[c]{x})]$. Since $\mathrm{F}(\sqrt[c]{x}) / \mathrm{F}$ is a geometric extension, $\mathrm{L}=\mathrm{F}^{\prime} \mathrm{F}(\sqrt[c]{x})=\mathrm{F}^{\prime}(\sqrt[c]{x}), \widetilde{\mathrm{F}} \cap \mathrm{L}=$ F^{\prime} and $\mathrm{F}^{\prime} \cap \mathrm{F}(\sqrt[c]{x})=\mathrm{F}$. Let $f=\operatorname{gcd}\left(c, q^{d}-1\right)$ and $\zeta_{f}=\left(\zeta_{c}\right)^{c / f}$. Clearly, $\mathrm{F}\left(\zeta_{f}\right) \subseteq \mathrm{F}^{\prime}$. Let $Q(X)$ be the irreducible polynomial of $\sqrt[c]{x}$ over F . Then $Q(X)=\prod_{j \in J}\left(X-\zeta_{c}^{j} \sqrt[c]{x}\right)$, where J is a subset of $\{1,2, \ldots, c\}$ and $\zeta_{c}^{j} \in \mathbb{F}_{q^{d}}$ for all $j \in J$. It is easy to see that $\zeta_{c}^{j} \in \mathbb{F}_{q^{d}}$ if and only if j divides c / f. Hence $Q(X)=\prod_{j \in J^{*}}\left(X-\zeta_{f}^{j} \sqrt[c]{x}\right)$ for some $J^{*} \subseteq\{1,2, \ldots, f\}$. Since $\mathrm{L}=\mathrm{F}^{\prime} \mathrm{F}(\sqrt[c]{x})$ and $\mathrm{F}^{\prime} \cap \mathrm{F}(\sqrt[c]{x})=\mathrm{F}, Q(X)$ is also the irreducible irreducible polynomial of $\sqrt[c]{x}$ over F^{\prime}. Since $\mathrm{L}=\mathrm{F}\left(\sqrt[c]{x}, \zeta_{f}^{j}: j \in J^{*}\right) \subseteq$ $\mathrm{F}\left(\sqrt[c]{x}, \zeta_{f}\right) \subseteq \mathrm{F}^{\prime}(\sqrt[c]{x})=\mathrm{L}$, we have $\mathrm{L}=\mathrm{F}\left(\sqrt[c]{x}, \zeta_{f}\right)$ and $\mathrm{F}^{\prime}=\mathrm{F}\left(\zeta_{f}\right)$. Note that $\mathrm{L} / \mathrm{F}^{\prime}$ is a finite Galois extension and let $\Gamma=\operatorname{Gal}\left(\mathrm{L} / \mathrm{F}^{\prime}\right)$. Let \mathcal{U}_{f} be the group of f-th roots of unity in $\overline{\mathbb{F}}_{q}$. Since $Q(X)=\prod_{\sigma \in \Gamma}(X-\sigma(\sqrt[c]{x}))$, $(\sqrt[c]{x})^{\sigma-1} \in \mathcal{U}_{f}$ for all $\sigma \in \Gamma$. Let $\psi: \Gamma \rightarrow \mathcal{U}_{f}$ be the homomorphism defined by $\psi(\sigma)=(\sqrt[c]{x})^{\sigma-1}$. Then $\operatorname{Im}(\psi)=\left\langle\zeta_{f_{0}}\right\rangle$ for some $f_{0} \mid f$, and so $Q(X)=\prod_{j=1}^{f_{0}}\left(X-\zeta_{f_{0}}^{j} \sqrt[c]{x}\right)$. Now we can follow the same argument as in the classical case for the rest of proof.

For each nonconstant unit $x \in \mathcal{O}_{\mathrm{F}}^{\times}$, we define the number $\phi(x)$ as the greatest positive integer n such that $x=u^{n}$ for some $u \in \mathrm{~F}$. Clearly, $\phi(\sigma(x))=\phi(x)$ for all $\sigma \in G$. Fix a triple $(x, \underline{\mathfrak{c}}, N)$, where $x \in \mathcal{C}_{\mathrm{F}}, \underline{\mathfrak{c}}$ an ideal class and N a positive integer with $p \nmid N$. For each $\mathfrak{Q} \in \mathbf{P}(\underline{\mathfrak{c}}, N)$, let $s_{\mathfrak{Q}}$ be a fixed generator of $(\mathbb{A} / \mathfrak{q})^{\times}$, where $\mathfrak{q}=\mathfrak{Q} \cap \mathbb{A}$. Then there exists a nonzero fractional ideal $\mathfrak{D}_{\mathfrak{Q}}$ of \mathcal{O}_{F} such that $\mathfrak{D}_{\mathfrak{Q}}^{N} \prod_{\sigma \in G}\left(\mathfrak{Q}^{\sigma^{-1}}\right)^{r_{\sigma}(\mathfrak{Q})}$ is a principal ideal, where the integers $r_{\sigma}(\mathfrak{Q})$ satisfy $s_{\mathfrak{Q}}^{r_{\sigma}(\mathfrak{Q})} \equiv \sigma(x) \bmod \mathfrak{Q}$. Let $\sigma \in G$ be fixed. We define $g=g(x, \underline{\mathfrak{c}}, N, \sigma)$ as the greatest common divisor of N and of all the $r_{\sigma}(\mathfrak{Q})$ such that $\mathfrak{Q} \in \mathbf{P}(\underline{c}, N)$.

Fix an embedding of F into k_{∞}. We call $x \in \mathrm{~F}$ positive if $\operatorname{sgn}(x)=1$.
Theorem 2.6. Given $x \in \mathcal{C}_{\mathrm{F}} \backslash \mathbb{F}_{q}^{\times}, \underline{\mathfrak{c}}$ an ideal class of $\mathcal{O}_{\mathrm{F}}, N$ a positive integer with $p \nmid N$ and $\sigma \in G$, let $g=g(x, \underline{c}, N, \sigma)$. If $\operatorname{gcd}(N, q-1)=1$ or $\sigma(x)$ is a positive, then we have $\operatorname{gcd}(N, \phi(x))|g| \operatorname{gcd}(N, f \phi(x))$, where $f=\operatorname{gcd}(g, q-1)$.

Proof. As in classical case, it can be shown easily that $\operatorname{gcd}(N, \phi(x))$ divides g. For any $\mathfrak{Q} \in \mathbf{P}(\underline{c}, N)$, there exists $y_{\mathfrak{Q}} \in \mathbb{A}$ such that $\sigma(x) \equiv$ $y_{\mathfrak{Q}}^{g} \bmod \mathfrak{Q}$. By Proposition 2.5, $\sigma(x)=\alpha y^{g / f}$ for some $y \in \mathcal{O}_{\mathrm{F}}$ and $\alpha \in \mathbb{F}_{q}^{\times}$, a f-th root of unity, where $f=\operatorname{gcd}(g, q-1)$. If $\operatorname{gcd}(N, q-1)=1$,
then $f=1, \alpha=1$ and hence $\sigma(x)=y^{g / f}$. If $\sigma(x)$ is a positive, then $1=\alpha \cdot \operatorname{sgn}(y)^{g / f}$. Replacing y by $y / \operatorname{sgn}(y)$, we also have $\sigma(x)=y^{g / f}$. Thus $g \mid f \phi(x)$, and so $g \mid(N, f \phi(x))$.

3. Proof of Theorem 1.1

For any finite abelian group A, we denote by A_{ℓ} the Sylow ℓ-subgroup of A for any prime ℓ. Let $x \in \mathcal{C}_{\mathrm{F}}, \underline{\mathfrak{c}} \in \mathcal{C} l_{\mathrm{F}}$ and N positive integer with $p \nmid N$ be given. For any $\mathfrak{Q} \in \mathbf{P}(\underline{c}, N)$, there is an ideal class $\underline{\mathfrak{d}}_{\mathfrak{Q}} \in \mathcal{C} l_{\mathrm{F}}$ such that

$$
\begin{equation*}
\mathfrak{d}_{\mathfrak{Q}}^{N} \prod_{\sigma \in G} \sigma^{-1}(\underline{\mathfrak{c}})^{r_{\sigma}(\mathfrak{Q})}=1, \tag{3.1}
\end{equation*}
$$

where the integers $r_{\sigma}(\mathfrak{Q})$ satisfy $s_{\mathfrak{Q}}^{r_{\sigma}(\mathfrak{Q})} \equiv \sigma(x) \bmod \mathfrak{Q}$.
Proposition 3.1. Let ℓ be a prime number such that $\ell \neq p$. Let $x \in \mathcal{C}_{\mathrm{F}}$ and let ℓ^{n} be an exponent of $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$. If $\underline{\mathfrak{c}} \in\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}, \mathfrak{Q} \in \mathbf{P}\left(\underline{\mathfrak{c}}, \ell^{n}\right)$ and if $r_{\sigma}=r_{\sigma}(\mathfrak{Q}), \sigma \in G$, are integers satisfying $s_{\mathfrak{Q}}^{r_{\sigma}} \equiv \sigma(x) \bmod \mathfrak{Q}$, then $\varrho=\varrho_{\mathfrak{Q}}=\sum_{\sigma \in G} r_{\sigma}(\mathfrak{Q}) \sigma^{-1}$ annihilates $\underline{\mathfrak{c}}$.

Proof. Note that the integers r_{σ} are uniquely determined modulo ℓ^{n} because $\ell^{n} \mid \Phi(\mathfrak{q})$. Since ${\underline{\boldsymbol{c}^{n}}}^{n}=1$, (3.1) holds with $N=\ell^{n}$. Since all conjugates of $\underline{\mathfrak{c}}$ belong to $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}, \underline{\mathfrak{d}}_{\mathfrak{Q}}^{\ell^{n}} \in\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$, and hence $\underline{\mathfrak{d}}_{\mathfrak{Q}} \in\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$ and $\underline{\mathfrak{d}}_{\mathfrak{Q}}^{\ell^{n}}=1$. Therefore $\underline{\mathfrak{c}}^{\varrho}=1$.

For any character χ of G, we define the idempotent element e_{χ} as follows:

$$
e_{\chi}=\frac{1}{|G|} \sum_{\sigma \in G} \operatorname{Tr}(\chi(\sigma)) \sigma^{-1} \in \mathbb{Q}_{\ell}[G]
$$

where " Tr " is the trace map from $\mathbb{Q}_{\ell}(\chi):=\mathbb{Q}_{\ell}(\chi(\sigma): \sigma \in G)$ to \mathbb{Q}_{ℓ}. Now assume that $|G|$ is prime to ℓ. Then $e_{\chi} \in \mathbb{Z}_{\ell}[G]$ for all character χ of G.

Since there is a Minkowski unit in $\mathcal{O}_{\mathrm{F}}^{\times}$, as in classical case, we have
Proposition 3.2. Suppose that $\ell \nmid p|G|$. Let χ be a nontrivial character of G and ℓ^{n} an exponent of $\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. Let $\ell^{a_{\chi}}$ be the exact exponent of the χ-part $e_{\chi}\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$ of $\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. Then there exists a positive $x \in e_{\chi}\left(\mathcal{C}_{\mathrm{F}} / \mathcal{C}_{\mathrm{F}} \cap\left(\mathcal{O}_{\mathrm{F}}^{\times}\right)^{\ell^{n}}\right)$ such that $\ell^{a_{\chi}} \| \phi(x)$.

Lemma 3.3. Suppose $\theta \in e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$ and ℓ^{a} is the highest power of ℓ dividing $\theta(0 \leq a<n)$. Then $\ell^{-a} \theta e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]=e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$. In particular, there exists $\theta^{\prime} \in e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$ such that $\ell^{-a} \theta \theta^{\prime}=e_{\chi}$.

Proof. See the proof of Lemma 15.6 in [5].
Now we give the proof of Theorem 1.1. Let ℓ^{n} be an exponent of $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$ and $\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. Let $\underline{\mathfrak{c}} \in\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$. For each $\mathfrak{Q} \in \mathbf{P}\left(\underline{c}, \ell^{n}\right)$, choose a generator $s_{\mathfrak{Q}}$ of $(\mathbb{A} / \mathfrak{q})^{\times}$, where $\mathfrak{q}=\mathfrak{Q} \cap \mathbb{A}$, and define

$$
\Psi_{\mathfrak{Q}}: \mathcal{C}_{\mathrm{F}} / \mathcal{C}_{\mathrm{F}} \cap\left(\mathcal{O}_{\mathrm{F}}^{\times}\right)^{\ell^{n}} \rightarrow \mathbb{Z} / \ell^{n} \mathbb{Z}[G]
$$

by $\Psi_{\mathfrak{Q}}(x)=\sum_{\sigma \in G} r_{\sigma} \sigma^{-1}$, where the integers $r_{\sigma}=r_{\sigma}(\mathfrak{Q})$ are uniquely determined modulo ℓ^{n} and satisfy $s_{\mathfrak{Q}}^{r_{\sigma}} \equiv \sigma(x) \bmod \mathfrak{Q}$. By Proposition 3.1, $\mathfrak{c}^{\Psi_{\mathfrak{Q}}(x)}=1$ for all $x \in \mathcal{C}_{\mathrm{F}} / \mathcal{C}_{\mathrm{F}} \cap\left(\mathcal{O}_{\mathrm{F}}^{\times}\right)^{\ell^{n}}$. For any nontrivial character χ of G, let $\Psi_{\mathfrak{Q}}^{\chi}: e_{\chi}\left(\mathcal{C}_{\mathrm{F}} / \mathcal{C}_{\mathrm{F}} \cap\left(\mathcal{O}_{\mathrm{F}}^{\times}\right)^{\ell^{n}}\right) \rightarrow e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$ be the restriction of $\Psi_{\mathfrak{Q}}$. Let $\ell^{a_{\chi}}$ be the exact exponent of $e_{\chi}\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. There exists a positive $x \in e_{\chi}\left(\mathcal{C}_{\mathrm{F}} / \mathcal{C}_{\mathrm{F}} \cap\left(\mathcal{O}_{\mathrm{F}}^{\times}\right)^{\ell^{n}}\right)$ satisfying $\ell^{a} \times \| \phi(x)$. If $\ell^{\ell} \|(q-1)$, then $g=g\left(x, \mathfrak{c}, \ell^{n}, 1\right)$ divides $\ell^{a_{\chi}+e}$. There exists $\mathfrak{Q} \in \mathbf{P}\left(\underline{c}, \ell^{n}\right)$ satisfying $\Psi_{\mathfrak{Q}}^{\chi}(x) \not \equiv 0 \bmod \ell^{a_{\chi}+e+1}$. For \mathfrak{Q} as above, let a^{\prime} be the minimal such that $\Psi_{\mathfrak{Q}}^{\chi}(x) \not \equiv 0 \bmod \ell^{a^{\prime}+1}$, so that $a^{\prime} \leq a_{\chi}+e$. Then $\ell^{-a^{\prime}} \Psi_{\mathfrak{Q}}^{\chi}(x) \mathbb{Z} / \ell^{n} \mathbb{Z}[G]=$ $e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$. Thus $\operatorname{Im}\left(\Psi_{\mathfrak{Q}}^{\chi}\right) \supseteq \ell^{a^{\prime}} e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G] \supseteq(q-1) \ell^{a_{\chi}} e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$, and so $(q-1) \ell^{a_{\chi}} e_{\chi}$ annihilates $\underline{\mathfrak{c}}$. Since $\underline{\mathfrak{c}} \in\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$ is arbitrary, it proves that $(q-1) \ell^{a_{\chi}} e_{\chi}$ annihilates $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$. This is also true for the trivial character χ_{0} because $e_{\chi_{0}}$ is essentially the norm and $\ell \nmid h_{\mathrm{k}}$.

Now, suppose $\theta \in \mathbb{Z}[G]$ annihilates $\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. For any character χ, θe_{χ} annihilates $e_{\chi}\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$. Let ℓ^{b} be the maximal power of ℓ dividing θe_{χ}. There exists $\theta^{\prime} \in e_{\chi} \mathbb{Z} / \ell^{n} \mathbb{Z}[G]$ such that $\theta e_{\chi} \theta^{\prime}=\ell^{b} e_{\chi}$ (by Lemma 3.3). Then ℓ^{b} annihilates $e_{\chi}\left(\mathcal{O}_{\mathrm{F}}^{\times} / \mathcal{C}_{\mathrm{F}}\right)_{\ell}$, and so $b \geq a_{\chi}$. Thus, $\ell^{a_{\chi}} \mid \theta e_{\chi}$ and $(q-1) \theta e_{\chi}$ annihilates $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$. Since $(q-1) \theta=\sum_{\chi}(q-1) \theta e_{\chi}$, it follows that $(q-1) \theta$ annihilates $\left(\mathcal{C} l_{\mathrm{F}}\right)_{\ell}$.

References

[1] J. Ahn, S. Bae and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields. Trans. Amer. Math. Soc. 355 (2003), 1803-1818.
[2] D. Hayes, A brief introduction to Drinfeld modules. The arithmetic of function fields (Columbus, OH, 1991), 1-32.
[3] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
[4] F. Thaine, On the ideal class groups of real abelian number fields. Ann. of Math. (2) 128 (1988), 1-18
[5] L. Washington, Introduction to cyclotomic fields. Second edition. GTM 83. Springer-Verlag, New York, (1997).
*
Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received November 28, 2008; Accepted February 13, 2009.
 2000 Mathematics Subject Classification: Primary 11R58, 11R60, 11R18, 11R29.
 Key words and phrases: class group, annihilator, function field.
 This work was supported by the research grant of the Chungbuk National University in 2008.

