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THAINE’S THEOREM IN FUNCTION FIELD

HwaNYUP JUNG*

ABSTRACT. Let F be a finite real abelian extension of a global
function field k with G = Gal(F/k). Assume that F is an extension
field of the Hilbert class field K. of k and is contained in a cyclotomic
function field K. Let £ be any prime number not dividing phk|G]|.
In this paper, we show that if § € Z[G] annihilates the Sylow ¢-
subgroup of OF /Cr, then (g — 1)6 annihilates the Sylow ¢-subgroup
Of ClF

1. Introduction

Let F be a totally real abelian number field with G = Gal(F/Q). Let
Op be the group of global units of F, Cp the group of cyclotomic units
of F of conductor level and Clp the class group of F. Let p be a prime
not dividing [F : Q]. In [4], Thaine has shown the following remarkable
result: If 0 € Z|G] annihilates the Sylow p-subgroup of Of /Cr, then 20
annihilates the Sylow p-subgroup of Cly.

In this paper we consider the analogous problem in function fields.
Let k be a global function field over the finite field F, with ¢ elements
of characteristic p. Fix a place co of k of degree one and a sign function
sgn : koo — Fy with sgn(0) = 0, where ko is the completion of k£ at oo.
Let A be the Dedekind subring of k consisting of the functions regular
away from oo. For any finite separable extension F of k, write Op for
the integral closure of A in F and Of be its group of units. Also write
Clp for the ideal class group of Op and hp = [Clp|. In this paper we
only consider finite abelian extension F of k contained in a cyclotomic
function field of (k,o00,sgn). Let F be a finite real abelian extension
of k, i.e., oo splits completely in F, with G = Gal(F/k). We assume
that F contains the Hilbert class field of (k,00). Let Cp be the group
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of cyclotomic units of F in the sense of [1] (see the definition 2.2). The
main result of this paper is

THEOREM 1.1. Let ¢ be a prime not dividing ¢ { phx|G|. If 6 € Z|G]
annihilates the Sylow (-subgroup of Of /Cr, then (¢ — 1)0 annihilates
the Sylow {-subgroup of Clg.

For any proper integral ideal of n of A, we write ®(n) = [(A/n)*| and
denote by K, the cyclotomic function field of (k, 0o, sgn) of conductor n.
Moreover we write K, for the Hilbert class field of (k,c0). For details in
the theory of sgn-normalized Drinfeld A-module and cyclotomic function
field over the global function field k, we refer the readers to [2] or [3].

2. Preliminary

2.1. Cyclotomic units

Let p be a fixed sgn-normalized Drinfeld A-module. For any proper
ideal n of A, we fix a primitive n-torsion point A, of p.

LEMMA 2.1. Let n = pf, where f # e and p is a prime ideal of A.
Then we have

Pp()\n)a . jfp|f,
pp()\n)l—crp ) pr ", f;

where oy, denotes the Frobenius automorphism of p in Kj.

NKn/Kf ()\n) = {

Let F be a finite real abelian extension of k. Let m be the conductor
of F, i.e. Ky, is the smallest cyclotomic function field containing F. For
each proper ideal f of A, put Fy = F N Ky and Agr = Nk, (Ag)-

DEFINITION 2.2. Let Dp be the G-submodule of F* generated by F

and Asp with all f # e. We define Cp := Dp N Of, called the group of
cyclotomic units of F.

As a G-module, Dy is generated by Fy U{A;r : ¢ # flm}U{ Nk, /k, (Ap) }ps
where p runs over all prime ideals of A such that p { m.
For any prime ideal q of A which splits completely in F, write F(q)

F - K,. Since all prime ideals of O above q are totally ramified in F(q),
G acts on the set of prime ideals of Op(q) above g.

ProprosiTION 2.3. For any unit € € Cy, there exists u € (’);(q) such
that Ng(q)/r(u) =1 and u = € mod Q7 for all o € G.
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Proof. It suffices to show that for any ¢ € F U {Ajr : ¢ # fim} U
{Nk, /K. (Ap) }p, where p Tuns over all prime ideals of A such that p {m
and p # q, there exists u € O}?(q
For € € F;, it is easy to see that u = e satisfies the required ones.
For ¢ = Ajr with ¢ # f|lm, take u = HreGal(Kf/Ff)(A? + Ag). Then
u € Fi(q) C F(q), and so u € (’);f(q). Since Np(q)r(u) = Nk, /x; (u), we
have

Pa(A7) o
Ne@r(w) = 1] < qxf ) = N, /r; (M) = 1.

reGal(K;/Fy) f

) satisfying the required conditions.

Since Aq is contained in 9 for all 0 € G, u = HreGal(Kf/Ff))‘; =

Ajr mod Q°. For ¢ = Nk, k. (Ap) With p f m,p # q, similar as above,
we can show that u = J[ cqaik, k) (AF + Aq) satisfies the required
ones. =

Fix a generator s of (A/q)* and let 7 € Gal(F(q)/F) be the au-
tomorphism such that 7(\q) = ps(Aq). Let u be a unit in Lemma
2.3 and choose w € F(q) satisfying w™ = uw. Then we have (w) =
D ngg(ﬁ"fl)“’, where D is the lift of an ideal of OF relatively prime

to q and r, € Z. As in classical case, r, is determined uniquely modulo
®(q) by s = o(e) mod Q.

2.2. Applications of Tchebotarev density theorem

Given ideal class ¢ of Op and a positive integer N, we define P(¢, N)
as the set of prime ideals £ belonging to ¢ and lying above a prime ideal
q of A which splits completely in F and ®(q) = 0 mod N. By using the
Tchebotarev density theorem ([3, Theorem 9.13 A]), we can show that
if N is a positive integer with p{ N, then P(¢, N) is an infinite set.

LEMMA 2.4. For any nonconstant z € kX, and a positive integer c
prime to p, koo (/) is a totally ramified extension over Ko.

Proof. 1t is an easy consequence of local class field theory. O

PROPOSITION 2.5. Let N and ¢ be positive integers with ¢|N and
p 1 N. Let x be a nonconstant element of Op. Suppose that for all
(except possibly a finite set) of the prime ideals Q € P(c,N), there
exists yq € Op such that * = y§ mod Q. Then z = ay®/f for some
y € O and a € Fy, a f-th root of unity, where f = ged(c,q —1).
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Proof. Fix (. € F, a primitive c-th root of unity and let \/z be a fixed
c-th root of . By Lemma 2.4, F(/z)/F is a geometric extension and
FNF(yZ) =F, where F = F((.). Let L be the Galois closure of F({/)
over F. Clearly, L C F(/z). Let F/ = FF C F, where d = [L : F(/Z)].
Since F(/z)/F is a geometric extension, L = F'F(¢/z) = F/(¢z), FNL =
F’ and F'NF({/x) = F. Let f = ged(c, ¢ — 1) and ¢; = (¢)/7. Clearly,
F(¢r) € F'. Let Q(X) be the irreducible polynomial of /z over F.
Then Q(X) = [[;c,(X — ¢l /), where J is a subset of {1,2,...,¢} and
Cg € Fpaforallj € J. It is easy to see that Cg € Fa if and only if j divides

c¢/f. Hence Q(X) = [[;c;-(X — C}\C/E) for some J* C {1,2,..., f}.
Since L = F'F(/z) and F' NF(¢z) = F, Q(X) is also the irreducible
irreducible polynomial of /z over F'. Since L = F(/x, C} cjeJY)C
F(z,(r) C F'(y/x) = L, we have L = F(/z,(f) and F' = F((f). Note
that L/F’ is a finite Galois extension and let I' = Gal(L/F’). Let Uy be
the group of f-th roots of unity in ;. Since Q(X) = [[,cp(X —0o(y/x)),
(vz)° ' € Us for all ¢ € T. Let ¢ : I' — Uy be the homomorphism
defined by ¢ (o) = (/2)°~'. Then Im(¢)) = ((y,) for some fy|f, and so

Q(X) = Hfozl(X - C}O v/z). Now we can follow the same argument as
in the classical case for the rest of proof. O

For each nonconstant unit € Oy, we define the number ¢(x) as the
greatest positive integer n such that z = u" for some u € F. Clearly,
¢(o(z)) = ¢(x) for all o € G. Fix a triple (x,¢, N), where z € Cp, ¢ an
ideal class and N a positive integer with p t N. For each Q € P(¢, N), let
sq be a fixed generator of (A/q)*, where ¢ = Q N A. Then there exists

a nonzero fractional ideal D of Op such that DY HUGG(Q"_I)”(Q) is

a principal ideal, where the integers r,(Q) satisfy STD"(Q) = o(z) mod Q.

Let o € G be fixed. We define g = g(z,¢, N, o) as the greatest common
divisor of N and of all the r,(9) such that Q € P(¢, N).
Fix an embedding of F into ko.. We call x € F positive if sgn(x) = 1.

THEOREM 2.6. Given z € Cp\F;, ¢ an ideal class of O, N a positive
integer with p{ N and o € G, let g = g(x,¢, N,o). If gcd(N,q — 1) =1
or o(x) is a positive, then we have gcd(N, ¢(x))|g| gcd(N, fp(x)), where
f=ged(g,g=1).

Proof. As in classical case, it can be shown easily that gcd(N, ¢(z))
divides g. For any 9 € P(c¢, N), there exists yq € A such that o(z) =
yf-l mod Q. By Proposition 2.5, o(z) = ay9// for some y € Op and
a € FY, a f-throot of unity, where f = ged(g, ¢g—1). If ged(N,q—1) =1,
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then f = 1, = 1 and hence o(z) = y9//. If o(z) is a positive, then
1 = o -sgn(y)9f. Replacing y by y/sgn(y), we also have o(z) = y9/.
Thus g|f¢(z), and so g|(N, fo(z)). a

3. Proof of Theorem 1.1

For any finite abelian group A, we denote by Ay the Sylow ¢-subgroup
of A for any prime £. Let x € Cp,¢ € Clp and N positive integer with
p {1 N be given. For any Q € P(¢, N), there is an ideal class 04 € Clp
such that

(3.1) o3 [[e (@™ =1,
ceG

where the integers 7, (Q) satisfy 53 re(Q) = o(z) mod Q.

ProrosiTION 3.1. Let £ be a prime number such that ¢ # p. Let
x € Cp and let ™ be an exponent of (Clg)y. If ¢ € (Clg)s, Q € P(c, (")
and if ro = 1,(Q),0 € G, are integers satisfying s§ = o(r) mod Q,
then o = 09 =Y c;To(Q)o ™! annihilates c.

Proof. Note that the integers r, are uniquely determined modulo /"
because /"|®(q). Since ¢/ = 1, (3.1) holds with N = ¢". Since all
conjugates of ¢ belong to (Clp)g, 29 € (Cly)¢, and hence 25 € (Clp),
and Qg = 1. Therefore ¢? = 1. ]

For any character x of GG, we define the idempotent element e, as
follows:
ey = Z Tr U -1 < Q@[G],
|G‘ ceqG
where "Tr” is the trace map from Qu(x) := Qu(x(0) : 0 € G) to Q.
Now assume that |G| is prime to £. Then e, € Z[G] for all character x
of G.

Since there is a Minkowski unit in O, as in classical case, we have

PROPOSITION 3.2. Suppose that ¢ 1 p|G|. Let x be a nontrivial char-
acter of G and {" an exponent of (O /Cr)s. Let £7x be the exact expo-
nent of the x-part e, (O /Cr)e of (O /Cr)e. Then there exists a positive
z € ey (Crp/Cr N (OF)*") such that (% ||¢(z).

LEMMA 3.3. Suppose 0 € e, Z/{"Z|G] and (* is the highest power
of ¢ dividing 6 (0 < a < n). Then {~%0e, Z/("ZL|G) = e, Z/{"Z[G]. In
particular, there exists 6’ € e, Z/{"Z|G] such that {~*00" = e,,.
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Proof. See the proof of Lemma 15.6 in [5]. O

Now we give the proof of Theorem 1.1. Let ¢ be an exponent of
(Clr)e and (Of /Cr)e. Let ¢ € (Clg),. For each Q € P(c,£"), choose a
generator sq of (A/q)*, where ¢ = QN A, and define

Uq:Cr/CrN (00 — Z/"Z]G)

by Un(z) = > ,cqre0 ', where the integers r, = r,(Q) are uniquely
determined modulo £ and satisfy s§ = o(z) mod Q. By Proposition
3.1, ¢¥2@) =1 forallx € Cr/Cr N (O?)fn. For any nontrivial character
x of G, let W§ : e, (Cr/Cr N (OF )") — e, Z/"Z[G] be the restriction
of Wy. Let £%x be the exact exponent of e, (Op /Cr)e. There exists
a positive x € e, (Cp/Cr N (OF)"") satistying ¢%x||p(z). If £¢]|(q — 1),
then g = g(z, ¢, 0", 1) divides £%xT¢. There exists Q € P(c, £") satisfying
U (x) # 0 mod £xFetl For Q as above, let @/ be the minimal such that
Y (2) # 0 mod ¢4+, so that @’ < a, + e. Then (=9 WY (2)Z/"Z[G] =
exZ/0"Z[G]. Thus Im(¥§) 2 (Ve ZVL[G] D (q — 1)%e, Z/ "G,
and so (¢ — 1)¢%xe,, annihilates ¢. Since ¢ € (Cly), is arbitrary, it proves
that (¢ — 1)¢%xe, annihilates (Clg),. This is also true for the trivial
character xo because ey, is essentially the norm and ¢ 1 hy.

Now, suppose # € Z[G] annihilates (Op /Cr)¢. For any character x,
fe, annihilates e, (O /Cr);. Let £° be the maximal power of ¢ dividing
fe,. There exists 0’ € e,Z/¢"Z[G] such that fe, 8 = %, (by Lemma
3.3). Then ¢ annihilates e, (O} /Cr)s, and so b > a,. Thus, £%x|fe, and
(g — 1)fey annihilates (Clg),. Since (¢ —1)0 =3 _, (¢ — 1)fey, it follows
that (¢ — 1)@ annihilates (Clp)y.
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