REMARKS ON INTERVAL-VALUED FUZZY MINIMAL PRECONTINUOUS MAPPINGS AND INTERVAL-VALUED FUZZY MINIMAL PREOPEN MAPPINGS

Won Keun Min* and Myeong Hwan Kim

ABSTRACT. In [5], we introduced the concepts of IVF *m*-preopen sets and IVF *m*-precontinuous mappings on interval-valued fuzzy minimal spaces. In this paper, we introduce the concept of IVF *m*-preopen mapping and investigate characterizations for IVF *m*-precontinuous mappings and IVF *m*-preopen mappings.

1. Introduction

Zadeh [7] introduced the concept of fuzzy set and several researchers were concerned about the generalizations of the concept of fuzzy sets, intuitionistic fuzzy sets [1] and interval-valued fuzzy sets [3]. Alimohammady and Roohi [2] introduced fuzzy minimal structures and fuzzy minimal spaces and some results are given. In [4], Min introduced the concepts of IVF minimal structures and IVF m-continuous mappings which are generalizations of IVF topologies and IVF continuous mappings [6], respectively. In [5], Min et al. introduced the concepts of IVF m-preopen sets and IVF m-precontinuous mappings on interval-valued fuzzy minimal spaces. In this paper, we introduce the concept of IVF m-preopen mapping and investigate characterizations for IVF m-precontinuous mappings and IVF m-preopen mappings.

Received May 19, 2009. Revised September 10, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: interval-valued fuzzy minimal spaces, IVF m-preopen sets, IVF m-precontinuous, IVF m-preopen mapping.

^{*}Corresponding author.

2. Preliminaries

Let D[0,1] be the set of all closed subintervals of the interval [0,1]. The elements of D[0,1] are generally denoted by capital letters M, N, \cdots and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points, respectively. Especially, we denote $\mathbf{0} = [0,0], \mathbf{1} = [1,1]$, and $\mathbf{a} = [a,a]$ for $a \in (0,1)$. We also note that

- (1) $(\forall M, N \in D[0, 1])(M = N \Leftrightarrow M^L = N^L, M^U = N^U).$
- (2) $(\forall M, N \in D[0,1])(M \leq N \Leftrightarrow M^L \leq N^L, M^U \leq N^U)$.

For every $M \in D[0,1]$, the complement of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$.

Let X be a nonempty set. A mapping $A: X \to D[0,1]$ is called an interval-valued fuzzy set (simply, IVF set) in X. For each $x \in X$, A(x) is a closed interval whose lower and upper end points are denoted by $A(x)^L$ and $A(x)^U$, respectively. For any $[a,b] \in D[0,1]$, the IVF set whose value is the interval [a,b] for all $x \in X$ is denoted by [a,b]. In particular, for any $c \in [a,b]$, the IVF set whose value is $\mathbf{c} = [c,c]$ for all $x \in X$ is denoted by simply \widetilde{a} . For a point $p \in X$ and for $[a,b] \in D[0,1]$ with b > 0, the IVF set which takes the value [a,b] at p and $\mathbf{0}$ elsewhere in X is called an interval-valued fuzzy point (simply, IVF point) and is denoted by $[a,b]_p$. In particular, if b=a, then it is also denoted by a_p . We denote the set of all IVF sets by IVF(X). An IVF point M_x , where $M \in D[0,1]$, is said to belong to an IVF set A in X, denoted by $M_x \in A$, if $A(x)^L \geq M^L$ and $A(x)^U \geq M^U$. In [6], it has been shown that $A = \bigcup \{M_x : M_x \in A\}$. For every $A, B \in IVF(X)$,

$$A = B \Leftrightarrow (\forall x \in X)([A(x)]^L = [B(x)]^L \text{ and } [A(x)]^U = [B(x)]^U),$$

$$A \subseteq B \Leftrightarrow (\forall x \in X)([A(x)]^L \subseteq [B(x)]^L \text{ and } [A(x)]^U \subseteq [B(x)]^U).$$

The complement A^c of A is defined by

$$[\boldsymbol{A}^{\boldsymbol{c}}(\boldsymbol{x})]^L = 1 - [\boldsymbol{A}(\boldsymbol{x})]^U$$
 and $[\boldsymbol{A}^{\boldsymbol{c}}(\boldsymbol{x})]^U = 1 - [\boldsymbol{A}(\boldsymbol{x})]^L$

for all $x \in X$.

For a family of IVF sets $\{A_i : i \in J\}$ where J is an index set, the union $G = \bigcup_{i \in J} A_i$ and $F = \bigcap_{i \in J} A_i$ are defined by

$$(\forall x \in X)([G(x)]^L = \sup_{i \in J} [A_i(x)]^L, [G(x)]^U = \sup_{i \in J} [A_i(x)]^U),$$

$$(\forall x \in X)([F(x)]^L = \inf_{i \in J} [A_i(x)]^L, [F(x)]^U = \inf_{i \in J} [A_i(x)]^U),$$

respectively.

Let $f: X \to Y$ be a mapping and let A be an IVF set in X. Then the image of A under f, denoted by f(A), is defined as follows

$$[f(A)(y)]^{L} = \begin{cases} \sup_{f(x)=y} [A(x)]^{L}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise }, \end{cases}$$
$$[f(A)(y)]^{U} = \begin{cases} \sup_{f(x)=y} [A(x)]^{U}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise }, \end{cases}$$

for all $y \in Y$.

Let B be an IVF set in Y. Then the inverse image of B under f, denoted by $f^{-1}(B)$, is defined as follows

$$(\forall x \in X)([f^{-1}(B)(x)]^L = [B(f(x))]^L, [f^{-1}(B)(x)]^U = [B(f(x))]^U).$$

DEFINITION 2.1 ([6]). A family τ of IVF sets in X is called an interval-valued fuzzy topology on X if it satisfies:

- (1) $0, 1 \in \tau$.
- (2) $A, B \in \tau \Rightarrow A \cap B \in \tau$.
- (3) For $i \in J$, $A_i \in \tau \Rightarrow \bigcup_{i \in J} A_i \in \tau$.

Every member of τ is called an IVF open set. An IVF set A is called an IVF closed set if the complement of A is an IVF open set. And (X, τ) is called an *interval-valued fuzzy topological space*.

DEFINITION 2.2 ([4]). A family \mathfrak{M} of interval-valued fuzzy sets in X is called an *interval-valued fuzzy minimal structure* on X if

$$0,1\in\mathfrak{M}$$
.

In this case, (X, \mathfrak{M}) is called an *interval-valued fuzzy minimal space* (simply, *IVF minimal space*). Every member of \mathfrak{M} is called an IVF mopen set. An IVF set A is called an IVF m-closed set if the complement of A (simply, A^c) is an IVF m-open set.

Let (X, \mathfrak{M}) be an IVF minimal space and A in IVF(X). The IVF minimal-closure and the IVF minimal-interior of A [4], denoted by mC(A) and mI(A), respectively, are defined as

$$mC(A) = \bigcap \{B \in IVF(X) : B^c \in \mathfrak{M} \text{ and } A \subseteq B\},$$

 $mI(A) = \bigcup \{B \in IVF(X) : B \in \mathfrak{M} \text{ and } B \subseteq A\}.$

THEOREM 2.3 ([4]). Let (X,\mathfrak{M}) be an IVF minimal space and A,B in IVF(X).

- (1) $mI(A) \subseteq A$ and if A is an IVF m-open set, then mI(A) = A.
- (2) $A \subseteq mC(A)$ and if A is an IVF m-closed set, then mC(A) = A.
- (3) If $A \subseteq B$, then $mI(A) \subseteq mI(B)$ and $mC(A) \subseteq mC(B)$.
- $(4) \ mI(A) \cap mI(B) \supseteq mI(A \cap B) \ \text{and} \ mC(A) \cup mC(B) \subseteq mC(A \cup B).$
- (5) mI(mI(A)) = mI(A) and mC(mC(A)) = mC(A).
- (6) $\mathbf{1} mC(A) = mI(\mathbf{1} A)$ and $\mathbf{1} mI(A) = mC(\mathbf{1} A)$.

3. Main Results

DEFINITION 3.1 ([5]). Let (X,\mathfrak{M}) be an IVF minimal space and A in IVF(X). Then an IVF set A is called an IVF m-preopen set in X if

$$A \subseteq mI(mC(A)).$$

An IVF set A is called an IVF m-preclosed set if the complement of A is IVF m-preopen. The pre-closure and the pre-interior of A, denoted by pmC(A) and pmI(A), respectively, are defined as the following:

$$pmC(A) = \bigcap \{ F \in IVF(X) : A \subseteq F, F \text{ is IVF } m\text{-preclosed in } X \}$$

 $pmI(A) = \bigcup \{ U \in IVF(X) : U \subseteq A, U \text{ is IVF } m\text{-preopen in } X \}.$

THEOREM 3.2 ([5]). Let (X,\mathfrak{M}) be an IVF minimal space and $A \in IVF(X)$. Then

- (1) $pmI(A) \subseteq A \subseteq pmC(A)$.
- (2) If $A \subseteq B$, then $pmI(A) \subseteq pmI(B)$ and $pmC(A) \subseteq pmC(B)$.
- (3) A is IVF m-preopen iff pmI(A) = A.
- (4) F is IVF m-preclosed iff pmC(F) = F.
- (6) pmI(pmI(A)) = pmI(A) and pmC(pmC(A)) = pmC(A).
- (6) pmC(1-A) = 1 pmI(A) and pmI(1-A) = 1 pmC(A).

DEFINITION 3.3 ([5]). Let (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) be two IVF minimal spaces. Then $f: X \to Y$ is said to be interval-valued fuzzy m-precontinuous (simply, IVF m-precontinuous) if for each IVF point M_x and each IVF m-open set V containing $f(M_x)$, there exists an IVF m-preopen set U containing M_x such that $f(U) \subseteq V$.

THEOREM 3.4. Let $f: X \to Y$ be a function on IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then the following statements are equivalent: (1) f is IVF m-precontinuous.

- (2) $f^{-1}(V) \subseteq mI(mC(f^{-1}(V)))$ for each IVF m-open set V in Y.
- (3) $mC(mI(f^{-1}(F))) \subseteq f^{-1}(F)$ for each IVF m-closed set F in Y.
- (4) $f(mC(mI(A))) \subseteq mC(f(A))$ for $A \in IVF(X)$.
- (5) $mC(mI(f^{-1}(B))) \subseteq f^{-1}(mC(B))$ for $B \in IVF(Y)$.
- (6) $f^{-1}(mI(B)) \subseteq mI(mC(f^{-1}(B)))$ for $B \in IVF(Y)$.

Proof. (1) \Rightarrow (2) Let V be an IVF m-open set in Y and $M_x \in f^{-1}(V)$. Since f is IVF m-precontinuous, there exists an IVF m-preopen set U containing M_x such that $f(U) \subseteq V$. Since U is IVF m-preopen, we have

$$M_x \widetilde{\in} U \subseteq mI(mC(U)) \subseteq mI(mC(f^{-1}(V))).$$

Hence we have $f^{-1}(V) \subseteq mI(mC(f^{-1}(V)))$.

- $(2) \Rightarrow (1)$ let M_x be an IVF point of X and V an IVF m-open set containing $f(M_x)$. Then by hypothesis, we have $f^{-1}(V) \subseteq mI(mC(f^{-1}(V)))$. This implies $f^{-1}(V)$ is an IVF m-preopen set containing M_x . Put $U = f^{-1}(V)$. Then $f(U) \subseteq V$ and so f is IVF m-precontinuous.
 - $(2) \Leftrightarrow (3)$ It is obvious from Theorem 3.2.
- $(3) \Rightarrow (4)$ Let $A \in IVF(X)$. Then since mC(f(A)) is an IVF m-closed set in Y, from (3), it follows $mC(mI(A)) \subseteq mC(mI(f^{-1}(f(A)))) \subseteq mC(mI(f^{-1}(mC(f(A))))) \subseteq f^{-1}(mC(f(A)))$.

Hence $f(mC(mI(A))) \subseteq mC(f(A))$.

- $(4) \Rightarrow (5)$ Obvious.
- $(5) \Rightarrow (6)$ For $B \in IVF(Y)$, from (5), it follows:

$$f^{-1}(mI(B)) = f^{-1}(\mathbf{1} - mC(\mathbf{1} - B))$$

$$= \mathbf{1} - (f^{-1}(mC(\mathbf{1} - B)))$$

$$\subseteq \mathbf{1} - mC(mI(f^{-1}(\mathbf{1} - B)))$$

$$= mI(mC(f^{-1}(B))).$$

Hence, we have (6).

 $(6)\Rightarrow (1)$ Let V an IVF m-open set in Y. Then by (6), we have $f^{-1}(V)=f^{-1}(mI(V))\subseteq mI(mC(f^{-1}(V)))$. This implies $f^{-1}(V)$ is an IVF m-preopen set. Hence f is IVF m-precontinuous.

LEMMA 3.5. Let (X, \mathcal{M}_X) be an IVF minimal space and $A \in IVF(X)$. Then

- $(1) \ mC(mI(A)) \subseteq mC(mI(pmC(A))) \subseteq pmC(A).$
- (2) $pmI(A) \subseteq mI(mC(pmI(A))) \subseteq mI(mC(A)).$
- (3) mC(mI(A)) = pmC(mI(A)).
- (4) pmI(mC(A)) = mI(mC(A)).

- *Proof.* (1) For $A \in IVF(X)$, since pmC(A) is an IVF m-preclosed set we have $mC(mI(A)) \subseteq mC(mI(pmC(A))) \subseteq pmC(A)$.
 - (2) It is similar to the proof of (1).
 - (3) For $A \in IVF(X)$, from (1) and Theorem 3.2, we have

$$mC(mI(mI(A))) \subseteq pmC(mI(A)) \subseteq mC(mI(A)).$$

This implies mC(mI(A)) = pmC(mI(A)).

(4) It follows from Theorem 3.2 and (2).

From Theorem 3.4 and Lemma 3.5, we have the next corollary.

COROLLARY 3.6. Let $f: X \to Y$ be a function on IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then the following statements are equivalent:

- (1) f is IVF m-precontinuous.
- (2) $f^{-1}(V)$ is an IVF m-preopen set for each IVF m-open set V in Y.
- (3) $f^{-1}(F)$ is an IVF *m*-preclosed set for each IVF *m*-closed set F in Y.
 - (4) $f(pmC(A)) \subseteq mC(f(A))$ for $A \in IVF(X)$.
 - (5) $pmC(f^{-1}(B)) \subseteq f^{-1}(mC(B))$ for $B \in IVF(Y)$.
 - (6) $f^{-1}(mI(B)) \subseteq pmI(f^{-1}(B))$ for $B \in IVF(Y)$.

DEFINITION 3.7. Let (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) be two IVF minimal spaces. Then $f: X \to Y$ is said to be *interval-valued fuzzy m-preopen* (simply, IVF *m*-preopen) if for each IVF *m*-open set U in X, f(U) is IVF m-preopen.

THEOREM 3.8. Let $f: X \to Y$ be a function on IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then the following statements are equivalent:

- (1) f is IVF m-preopen.
- (2) $f(mI(A)) \subseteq pmI(f(A))$ for $A \in IVF(X)$.
- (3) $mI(f^{-1}(B)) \subseteq f^{-1}(pmI(B))$ for $B \in IVF(Y)$.

Proof. (1) \Rightarrow (2) Let $A \in IVF(X)$. Then since f is IVF m-preopen, from Theorem 3.2, it follows

$$f(mI(A)) = pmI(f(mI(A))) \subseteq pmI(f(A))$$

Hence (2) is obtained.

 $(2) \Rightarrow (3)$ For $B \in IVF(Y)$, from (2), it follows

$$f(mI(f^{-1}(B)))\subseteq pmI(f(f^{-1}(B)))\subseteq pmI(B)$$

This implies $mI(f^{-1}(B)) \subseteq f^{-1}(pmI(B))$.

 $(3) \Rightarrow (1)$ Let U an IVF m-open set in X. Then from (3), we have $U = mI(U) \subseteq mI(f^{-1}(f(U))) \subseteq f^{-1}(pmI(f(U)))$. This implies $f(U) \subseteq pmI(f(U))$. By Theorem 3.2, f(U) is IVF m-preopen. Hence f is IVF m-preopen.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and System, **20**(1986), no. 1, 87–96.
- [2] M. Alimohammady and M. Roohi, Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos, Solutions and Fractals, 27 (2006), 599–605.
- [3] M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21, (1987), 1–17.
- [4] W. K. Min, Interval-valued fuzzy minimal structures and interval-valued fuzzy minimal spaces, International Journal of Fuzzy Logic and Intelligent Systems, 8(2008), no. 3, 202-206.
- [5] W. K. Min, M. H. KIM and J. I. KIM, Interval-valued fuzzy m-semiopen sets and interval-valued fuzzy m-preopen sets on interval-valued fuzzy minimal spaces, Honam Mathematical Journal, 31(2009), no. 1, 31–43.
- [6] T. K. Mondal and S. K. Samanta, *Topology of interval-valued fuzzy sets*, Indian J. Pure Appl. Math., **30**(1999), no. 1, 23–38.
- [7] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338–353.

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea E-mail: mhkim@kangwon.ac.kr