ON REFLEXIVE PRINCIPALLY QUASI-BAER RINGS

JIN YONG KIM

ABSTRACT. We investigate in this paper some equivalent conditions for right principally quasi-Baer rings to be reflexive. Using these results we are able to prove that if R is a reflexive right principally quasi-Baer ring then R is a left principally quasi-Baer ring. In addition, for an idempotent reflexive principally quasi-Baer ring R we show that R is prime if and only if R is torsion free.

Throughout this paper, R denotes an associative ring with identity. According to Clark [3], a ring R is called quasi-Baer if the right annihilator of each right ideal is generated (as a right ideal) by an idempotent. He considered quasi-Baer rings for characterizing a finite dimensional algebra over an algebraically closed field to be a twisted semigroup algebra of a matrix units semigroup. Recently principally quasi-Baer ring were defined in [2] to provide a lattice connection between the right principally quasi-Baer and quasi-Baer conditions. They also provide numerous examples and develop several basic results. For example it was proved that if R is semiprime then R is right principally quasi-Baer if and only if R is left principally quasi-Baer. We will show in this paper that there are several equivalent conditions which are sufficient to yield the above result. Actually we prove that if R is reflexive then R is right principally quasi-Baer if and only if R is left principally quasi-Baer. Also we show that if R is an idempotent reflexive principally quasi-Baer ring then R is prime if and only if R is torsion free.

For a nonempty subset A of R, r(a) and l(a) denote the right and left annihilators of A, respectively.

Recall that an idempotent in a ring R is called *left (resp. right)* semicnetral if xe = exe (resp. ex = exe) for all $x \in R$. It can be easily

Received April 22, 2009. Revised June 30, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 16D50, 16E50.

Key words and phrases: principally quasi-Baer ring, reflexive ring, idempotent reflexive ring, semicentral idempotent.

This work was supported by the Kyung Hee University in 2008.

checked that an idempotent e is left (resp. right) semicental if and only if eR (resp. Re) is an ideal of R. For a ring R, $S_l(R)$ (resp. $S_r(R)$) denotes the set of all left (resp. right) semicentral idempotents of R. We say that an idempotent $e \in R$ is called semicentral reduced if $S_l(eRe) = \{0, e\}$. Note that e is semicentral reduced if and only if $S_r(eRe) = \{0, e\}$. If 1 is semicentral reduced, then we say that R is semicentral reduced.

DEFINITION 1. A ring R is right (resp. left) principally quasi-Baer (or simply right (resp. left) pq-Baer) [2] if the right (resp. left) annihilator of a principally right (resp/ left) ideal is generated (as a right (resp. left) ideal) by an idempotent.

Note that biregular rings and quasi-Baer rings are pq-Baer.

DEFINITION 2. A left ideal I is said to be reflexive [5] if $aRb \subseteq I$ implies $bRa \subseteq I$ for $a, b \in R$. A ring R is called reflexive if 0 is a reflexive ideal.

Recall that a ring R is said to be idempotent reflexive [4] if aRe = 0 implies eRa = 0 for $a, e = e^2 \in R$.

REMARK 3. Note that a ring R is reflexive if and only if r(aR) = l(Ra) for all $a \in R$. Similarly we can observe that a ring R is idempotent reflexive if and only if r(eR) = l(Re) for all $e = e^2 \in R$.

The next proposition contains [2, Proposition 1.17]

PROPOSITION 4. Let R be a right pq-Baer ring. Then the following conditions are equivalent:

- (1) R is semiprime.
- (2) R is reflexive.
- (3) $S_l(R) = S_r(R) = B(R)$, where B(R) is the set of all central idempotents of R.
- (4) R is idempotent reflexive.
- *Proof.* (1) \Rightarrow (2): Let aRb = 0 for $a, b \in R$. Then (bRaR)(bRaR) = bR(aRb)RaR = 0. Since R is semiprime, bRaR = 0. Hence bRa = 0.
- $(2) \Rightarrow (3)$: Let $e \in S_l(R)$. Then (1-e)Re = 0, so eR(1-e) = 0 since R is reflexive. Hence ex = exe = xe for all $x \in R$. Therefore $S_l(R) = B(R)$. Similarly we have $S_r(R) = B(R)$.
- (3) \Rightarrow (4): Let $e = e^2 \in R$. We will show that r(eR) = l(Re). Let $x \in r(eR) = fR$ where $f \in S_l(R) = B(R)$. Thus eRf = 0, so fRe = 0. Hence xRe = 0, so $x \in l(Re)$. Similarly we have $l(Re) \subseteq r(eR)$. Hence

r(eR) = l(Re).

(4) \Rightarrow (1): Suppose that aRa = 0 for $a \in R$. Then $a \in r(aR) = eR$ where $e \in S_l(R)$. Thus aRe = 0, so eRa = 0 since R is idempotent reflexive. ?Hence $a \in r(eR) = fR$, where $f \in S_l(R)$. Now a = eb, a = fc and eRf = 0 for some $b, c \in R$. Therefore a = ea = efc = 0. \square

Note that if R is idempotent reflexive, then $S_l(R) = S_r(R) = B(R)$. Obviously any Abelian ring is idempotent reflexive but the converse is not true. However we have the next proposition.

Proposition 5. The following conditions are equivalent:

- (1) R is Abelian.
- (2) r(e) = r(eR) for every $e = e^2 \in R$.

Recall from [1] that R is said to satisfy the IFP (insertion of factors property) if r(a) is an ideal for all $a \in R$. Observe that if R has the IFP then r(a) = r(aR) for all $a \in R$. Now we will give a nice characterization of reduced rings.

Proposition 6. The following are equivalent:

- (1) R is a reduced ring.
- (2) R has the IFP and every nonzero principal right ideal is not nil.

Proof. $(1) \Rightarrow (2)$: Clear.

 $(2) \Rightarrow (1)$: Suppose that $a^2 = 0$ and $a \neq 0$. Then aR is not nil. Thus there is $c \in aR$ such that c is not nilpotent. Now c = ab for some $b \in R$, hence $ac = a^2b = 0$. Since r(a) is two-sided ideal of R and $c \in r(a)$, $bc \in r(a)$. Hence $abc = c^2 = 0$. Therefore c is nilpotent, it is absurd. \square

Using Proposition 4, we can give another proof of [2, Corollary 1.11] as follows.

PROPOSITION 7. Let R be a reflexive ring. Then R is right pq-Baer if and only if R is left pq-Baer.

Proof. Let R be a right pq-Baer and $a \in R$. Then we have r(aR) = eR where $e \in B(R)$. By Remark 3, l(Ra) = r(aR) = eR = Re. Hence R is left pq-Baer. Similarly we can get the converse.

Recall [2 , Lemma 1.2] that R is a semicentral reduced pq-Baer ring if and only if R is a prime ring. For a prime ideal P, $O(P) = \{a \in R \mid aRb = 0 \text{ for some } b \in R \setminus P\}$. According to [6], a ring R is called torsion free if there exists a prime ideal P of R such that O(P) = 0.

PROPOSITION 8. Let R be an idempotent reflexive pq-Baer ring. Then following conditions are equivalent:

- (1) R is prime.
- (2) R is torsion free.

Proof. (1) \Rightarrow (2): Since R is prime, we have $O(0) = \{a \in R \mid aRs = 0 \text{ for some } s \in R \setminus \{0\}\} = \{0\}$. Hence R is torsion free.

(2) \Rightarrow (1): Let P be a prime ideal of R such that O(P) = 0. By [2, Lemma 1.2] it is enough to show that $S_l(R) = \{0,1\}$. Let $e \in S_l(R)$. Then (1-e)Re = 0. Since R is idempotent reflexive, we have eR(1-e) = 0. Hence $e \in B(R)$. If $e \notin P$, then $1 - e \in O(P) = \{0\}$. Thus e = 1. If $e \in P$, then $1 - e \notin P$. Thus $e \in O(P) = \{0\}$, so e = 0. Therefore R is semicentral reduced.

References

- [1] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Australian Math. Soc. 2, 1970, pp. 363–368
- [2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, *Principally Quasi-Baer Rings*, Comm. in Algebra, **29**, 2001, pp. 639–660.
- [3] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34, 1967, pp. 417–423.
- [4] J.Y. Kim, Certain rings whose simple singular modules are GP-injective, Proc. Japan Academy, 81,Ser. A, 2005, pp. 125–128.
- [5] G. Mason, Reflexive ideals, Comm. Algebra, 9, 1981, pp. 1709–1724.
- [6] J. C. Shepherdson, Inverse and zero divisors in matrix rings, Proc. London. Math. Soc. 3, 1951, pp. 71–85.
- [7] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184, 1973, pp. 43–61.

Department of Applied Mathematics and Institute of Natural Sciences Kyung Hee University, Suwon 446-701, South Korea E-mail: jykim@khu.ac.kr