Review for Equilibrium Model of Biosorption

생물흡착의 평형모델에 대한 고찰

  • Jeon, Choong (Department of Environmental & Applied Chemical Engineering, Gangneung-Wonju National University)
  • 전충 (강릉-원주대학교 환경응용화학과)
  • Received : 2009.08.31
  • Accepted : 2009.09.29
  • Published : 2009.09.30

Abstract

Resent research on heavy metal biosorption has been focused on its mechanisms and principles. For effective metal removal/recoverythe process design has to be optimized for every type of application. That is most efficiently carried out based on computer simulations by means of mathematical models of the process. Therefore, the study on sorption equilibrium isotherm is important and the methodology wassummarized here involving both one metal and multi-metal systems.

중금속 생물흡착에 대한 최근의 연구는 흡착 기작과 원리에 중점을 두고 있다. 효과적인 금속 제거/회수 공정설계를 위하여 모든 형태의 적용에 최적화가 되어지고 있다. 그 최적화는 공정의 수학적 모델에 의한 컴퓨터 모사에 바탕을 두고 효과적으로 수행되어지고 있다. 그래서 등온흡착평형에 대한 연구가 중요하며 단일성분과 다성분계를 포함하는 방법이 소개하였다.

Keywords

References

  1. Crist, R. H., Martin, J. R., Guptill, P. W., Eslinger, J. M., and Crist, D. R.,“Interaction of metals and protons with algae.2. Ion exchange in adsorption and metal displacement by protons”, Environ. Sci. Technol. 24, pp. 337-342 (1990). https://doi.org/10.1021/es00073a008
  2. Chong, K.H., and Volesky, B.,“Metal biosorption equilibria in a ternary system”, Biotechnol. Bioeng. 49, pp. 629-638 (1996). https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<629::AID-BIT4>3.0.CO;2-Q
  3. Schiewer, S., and Volesky, B.,“Modeling of multi metal ion exchange in biosorption”. Environ. Sci. Technol. 30, pp. 2921-2927 (1996). https://doi.org/10.1021/es950800n
  4. Crist, R.H., Martin, J.R., Carr, D., Walson, J.R., Clarke, H.J., and Crist, D.R.,“Interaction of metals and protons with algae.4. Ion exchange vs adsorption model and a reassessment of scatchard plots; Ion exchange rates and equilibria compare with calcium alginate”. Environ. Sci. Technol. 28, pp. 1859-1866 (1994). https://doi.org/10.1021/es00060a016
  5. Crittenden, J.C., Wong, B.W.C., Thacker, W.E., Snoeyink, V.L., and Hinrichs, R.L.,“Mathematical model of sequential loading in fixed-bed adsorbes”. J. Water Pollut. Control Fed. 52(11), pp. 2780-2795 (1980).
  6. Yu, Q. and Wang, N.,“Computer simulation of the dynamics of multicomponent ion exchange and adsorption in fixed beds-gradient-direct moving finite element method”. Comput. Che. Eng. 13(8), pp. 915-926 (1989). https://doi.org/10.1016/0098-1354(89)85064-1
  7. Gu, T., Tasi, G.J., and Tsao, G.T.,“New approach to a general nonlinear multicomponent chromatography model”. AICHE J. 36(5), pp.784-788 (1990). https://doi.org/10.1002/aic.690360517
  8. Polzer, W.L. and Fuentes, H.R., “The use of a heterogeneity-based isotherm to interpret the transport of radionuclides in vocanic tuff media”. Acta. 44/45, pp. 361-365 (1988).
  9. Polzer, W.L., Rao, M.G.., Fuentes, H.R., and Beckman, R.J., “Thermodynamically derived relationship between the modified Langmuir isotherm and experimental parameters”. Environ. Sci. Technol., 26, pp. 1780-1786 (1992). https://doi.org/10.1021/es00033a011
  10. Zheng, Z., Gu, D., Anthony, R.J., and Klavetter, E., “Estimation of cesium ion exchange distribution coefficients for concentrated electrolytic solutions when using crystalline silicotitanates”. Ind. Eng. Chem. Res. pp. 34, 2142-2147 (1995). https://doi.org/10.1021/ie00045a026
  11. Holland, C.D., and Anthony, R.G.,“Fundamentals of chemical reaction engineering”, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ. Chapter 8, pp. 354-355 (1989).
  12. Bellot, J.C., and Condoret, J.S., “Modelling of liquid chromatography equilibria”. Process Biochem. 28, pp. 365-371 (1993). https://doi.org/10.1016/0032-9592(93)80023-A
  13. Zheng, Z., Philip, C.V., and Anthony, R.G., “Ion exchange of group I metals by hydrous crystalline silicotitanates”. Ind. Eng. Chem. Res. 35, 4246-4256 (1996). https://doi.org/10.1021/ie960073k
  14. Raffaela, B., Maria, P., Anna, G., and Manuel, V., “Sorption of proton and heavy metal ions on a macroporous chelating resin with an iminodiacetate active group as a function of temperature”. Talanta. 47, pp. 127-136 (1998). https://doi.org/10.1016/S0039-9140(98)00060-5
  15. Arevalo, E., Fernandez, A., Rendueles, M., and Diaz, M., “Equilibrium of metals with iminodiacetic resin in binary and ternary systems”. Solvent Extraction and Ion Exchange. 17(2), pp.429-454 (1999). https://doi.org/10.1080/07366299908934622
  16. David, A. F., and Jeremy, B. F., “Competitive adsorption of metal cations onto two gram positive bacteria; Testing the chemical equilibrium model”. Geochimica et Cosmochimica Acta. 63(19/20), pp.3059-3067(1999). https://doi.org/10.1016/S0016-7037(99)00233-1
  17. Bellot, J.C., Tarantino, R.V., and Condoret, J.S., “Thermodynamic modeling of multicomponent ion-exchange equilibria of amino acids”. AIChE Journal. 45, pp. 1329-1341 (1999). https://doi.org/10.1002/aic.690450617
  18. Jeon, C., Park, J.Y., and Yoo, Y.J.,“Biosorption model for binary adsorption sites”. J. Microbiol. Biotechnol. 11(5), pp. 781-787 (2001).
  19. Riemskijk, W. H., Van, J.C.M., De Wit, L.K., and Bolt, G.H., “Metal ion adsorption on heterogeneous surfaces: Adsorption models”. J. Collid Interface. Sci. 116, pp. 511-522 (1987). https://doi.org/10.1016/0021-9797(87)90147-0
  20. Chen, J., and Yiacoumi, S.,“Biosorption of metal ions aqueous solutions”. Sep Sci.Technol. 32, pp. 51-69 (1997). https://doi.org/10.1080/01496399708003186
  21. Kim, Y.H., Park, J.Y., and Yoo, Y.J.,“Modeling of biosorption by marine brown undaria pinnatifida based on surface complexation mechanism”. Korean J. Chem. Eng. 15. pp. 157-163 (1998). https://doi.org/10.1007/BF02707068
  22. Seki, H., and Suzuki, A.,“Adsorption of lead ions on composite biopolymer adsorbent”. Ind. Eng. Chem. Res. 35, pp. 1378-1382 (1996). https://doi.org/10.1021/ie950417r
  23. Konishi, Y., Asai, S., Shimanoka, J., Miyata, M., and Kawamura, T., “Recovery of neodymium and ytterbrium by biopolymer gel particles of alginic acid”. Ind. Eng. Chem. Res. 31, pp.2303-2311 (1992). https://doi.org/10.1021/ie00010a008
  24. Jang, L.K., Nguyen, D., and Greesy, G.G., “Effect of pH on the absorption of Cu(II) by alginate gel”. Water Res. 29(1), pp. 315-321 (1995). https://doi.org/10.1016/0043-1354(94)E0091-J