STUDY ON UNIVALENT HARMONIC MAPPINGS

Sook Heui Jun*

Abstract

In this paper, we obtain some coefficient bounds of harmonic univalent mappings on $\Delta=\{z:|z|>1\}$ which are starlike, convex, or convex in one direction.

1. Introduction

A harmonic univalent orientation-preserving mapping f from $\Delta=\{z$: $|z|>1\}$ onto a simply connected domain in the extended complex plane \mathbb{C}^{*} containing the point at infinity, which keep infinity fixed, is of the form

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1.1}
\end{equation*}
$$

where

$$
h(z)=z+\sum_{k=1}^{\infty} a_{k} z^{-k} \text { and } g(z)=\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $A \in \mathbb{C}$. The orientation-preserving and univalent properties imply that the Jacobian $\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}$ is positive and so

$$
\left|f_{\bar{z}}(z)\right|=\left|g^{\prime}(z)+\frac{\bar{A}}{2 z}\right|<\left|f_{z}(z)\right|=\left|h^{\prime}(z)+\frac{A}{2 z}\right| .
$$

The set of all harmonic, orientation-preserving, univalent mappings with the form (1.1) is denoted here by Σ. The study of harmonic univalent orientation-preserving mappings defined on $\Delta=\{z:|z|>1\}$ with $f(\infty)=$ ∞ was started by Hengartner and Schober[2]. Especially they studied the subclass Σ_{R} of all functions in Σ that map $\Delta=\{z:|z|>1\}$ onto the

[^0]complement of a real line segment. They showed that functions in Σ_{R} can be represented, but in a nonlinear fashion, in terms of probability measures on the unit circle, and they also obtained some sharp coefficient estimates as applications.

In this paper, we consider harmonic orientation-preserving univalent mappings f in Σ which are starlike, convex, or convex in one direction. In next section, we obtain inequality

$$
\sum_{k=1}^{\infty} k\left(\left|a_{k}\right|^{2}-\left|b_{k}\right|^{2}\right) \leq 1+2 \operatorname{Re}\left\{b_{1}\right\}
$$

when $f \in \Sigma$ is starlike, and show that this estimate is sharp for $f(z)=$ $z-\frac{1}{\bar{z}}+2 \log |z|$, which maps Δ onto $\mathbb{C} \backslash\{0\}$. In Theorem 2.5 and Theorem 2.6, we also obtain some coefficient estimates for $f \in \Sigma$ which is convex or convex in one direction by using the fact that for an analytic function $\varphi(\zeta)$ with $\operatorname{Re}\{\varphi(\zeta)\}>0$ and $\varphi(0)=1$ in $|\zeta|<1$, there exists a bounded regular function $\omega(\zeta)$, with $\omega(0)=0$ and $|\omega(\zeta)|<1$ in $|\zeta|<1$, such that

$$
\varphi(\zeta)=\frac{1+\omega(\zeta)}{1-\omega(\zeta)}
$$

2. Mappings to special domains

Definition 2.1. If for each $r(r>1)$ the image curve $f(|z|=r)$ has the property that each straight line parallel to some fixed direction cuts $f(|z|=r)$ in at most two points, we say that $f(z)$ is convex in that direction.

Definition 2.2. Let f be a mapping in Σ.
(1) f is starlike if each radial line from the origin hits the boundary $\partial f(\Delta)$ in exactly one point[3].
(2) f is convex if f maps Δ onto a domain whose complement is convex.

Theorem 2.3. If $f \in \Sigma$ is starlike, then

$$
\sum_{k=1}^{\infty} k\left(\left|a_{k}\right|^{2}-\left|b_{k}\right|^{2}\right) \leq 1+2 \operatorname{Re}\left\{b_{1}\right\} .
$$

This estimate is sharp for $f(z)=z-\frac{1}{\bar{z}}+2 \log |z|$, which maps Δ onto $\mathbb{C} \backslash\{0\}$.
Proof. A starlike function is characterized by the condition

$$
\frac{\partial}{\partial \theta}\left\{\arg f\left(r e^{i \theta}\right)\right\}>0
$$

for $r>1$. But $\arg f\left(r e^{i \theta}\right)=\operatorname{Im}\left\{\log f\left(r e^{i \theta}\right)\right\}$, so that

$$
\begin{aligned}
\frac{\partial}{\partial \theta}\left(\operatorname{Im}\left\{\log f\left(r e^{i \theta}\right)\right\}\right) & =\operatorname{Im}\left\{\frac{\partial}{\partial \theta} \log f\left(r e^{i \theta}\right)\right\} \\
& =\operatorname{Re}\left\{\frac{z h^{\prime}-\overline{z g^{\prime}}}{f}\right\}>0 .
\end{aligned}
$$

From this, we have that

$$
\left|\frac{1-\frac{z h^{\prime}-\overline{z g^{\prime}}}{f}}{1+\frac{z h^{\prime}-\overline{z g^{\prime}}}{f}}\right|<1 .
$$

Thus

$$
\begin{equation*}
\left|f-\left(z h^{\prime}-\overline{z g^{\prime}}\right)\right|^{2}<\left|f+\left(z h^{\prime}-\overline{z g^{\prime}}\right)\right|^{2} . \tag{2.1}
\end{equation*}
$$

An integration of the left side of (2.1) gives

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)-r e^{i \theta} h^{\prime}\left(r e^{i \theta}\right)+\overline{r e^{i \theta} g^{\prime}\left(r e^{i \theta}\right)}\right|^{2} d \theta \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(f-r e^{i \theta} h^{\prime}+\overline{r e^{i \theta} g^{\prime}}\right)\left(\bar{f}-\overline{r e^{i \theta} h^{\prime}}+r e^{i \theta} g^{\prime}\right) d \theta \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(\theta) \overline{P(\theta)} d \theta \\
& \quad=\sum_{k=1}^{\infty}(1+k)^{2}\left|a_{k}\right|^{2} r^{-2 k}+\sum_{k=1}^{\infty}(1-k)^{2}\left|b_{k}\right|^{2} r^{-2 k}+|A|^{2}(\log r)^{2},
\end{aligned}
$$

where

$$
P(\theta)=\sum_{k=1}^{\infty}(1+k) a_{k}\left(r e^{i \theta}\right)^{-k}+\sum_{k=1}^{\infty}(1-k) \overline{b_{k}}\left(r e^{-i \theta}\right)^{-k}+A l o g r .
$$

An integration of the right side of (2.1) gives

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)+r e^{i \theta} h^{\prime}\left(r e^{i \theta}\right)-\overline{r e^{i \theta} g^{\prime}\left(r e^{i \theta}\right)}\right|^{2} d \theta \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(f+r e^{i \theta} h^{\prime}-\overline{r e^{i \theta} g^{\prime}}\right)\left(\bar{f}+\overline{r e^{i \theta} h^{\prime}}-r e^{i \theta} g^{\prime}\right) d \theta \\
& =4 r^{2}+4 \overline{b_{1}}+4 b_{1}+\sum_{k=1}^{\infty}(1-k)^{2}\left|a_{k}\right|^{2} r^{-2 k} \\
& \quad+\sum_{k=1}^{\infty}(1+k)^{2}\left|b_{k}\right|^{2} r^{-2 k}+|A|^{2}(\log r)^{2}
\end{aligned}
$$

Therefore

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f-r e^{i \theta} h^{\prime}+\overline{r e^{i \theta} g^{\prime}}\right|^{2} d \theta<\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f+r e^{i \theta} h^{\prime}-\overline{r e^{i \theta} g^{\prime}}\right|^{2} d \theta
$$

implies that

$$
\begin{aligned}
& \sum_{k=1}^{\infty}(1+k)^{2}\left|a_{k}\right|^{2} r^{-2 k}+\sum_{k=1}^{\infty}(1-k)^{2}\left|b_{k}\right|^{2} r^{-2 k}+|A|^{2}(\log r)^{2} \\
&<4\left(r^{2}+\overline{b_{1}}+b_{1}\right)+\sum_{k=1}^{\infty}(1-k)^{2}\left|a_{k}\right|^{2} r^{-2 k} \\
&+\sum_{k=1}^{\infty}(1+k)^{2}\left|b_{k}\right|^{2} r^{-2 k}+|A|^{2}(\log r)^{2}
\end{aligned}
$$

Simplify this, then we obtain

$$
\sum_{k=1}^{\infty} k\left(\left|a_{k}\right|^{2}-\left|b_{k}\right|^{2}\right) r^{-2 k}<r^{2}+\overline{b_{1}}+b_{1}
$$

for $r>1$. Letting $r \rightarrow 1$, we have that

$$
\sum_{k=1}^{\infty} k\left(\left|a_{k}\right|^{2}-\left|b_{k}\right|^{2}\right) \leq 1+2 \operatorname{Re}\left\{b_{1}\right\}
$$

Theorem 2.4. ([4, Theorem 2.5.]) If $f \in \Sigma$ with real A is convex in the direction of the real axis, then $h-g$ is conformal and convex in the direction of the real axis in Δ.

Theorem 2.5. If $f \in \Sigma$ with $A=0$ is convex and if the coefficients a_{n}, b_{n} are all real, then

$$
\begin{aligned}
-1 \leq a_{1}+b_{1} & \leq 3 \\
\left|a_{n}+b_{n}\right| \leq \frac{2 \sqrt{1+a_{1}+b_{1}}}{n} & \leq \frac{4}{n} \quad \text { for } n>1 .
\end{aligned}
$$

Proof. Step 1; Since f is convex, $e^{-i \phi / 2} f=e^{-i \phi / 2} h+e^{-i \phi / 2} \bar{g}$ is also convex. Thus $e^{-i \phi / 2} f$ is convex in the direction of the real axis. This implies that $e^{-i \phi / 2} h-e^{i \phi / 2} g$ is conformal and convex in the direction of the real axis in Δ by Theorem 2.4. Hence, $h-e^{i \phi} g$ is convex in the direction $\phi / 2$ and analytic function $h+g=z+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) z^{-k}$ is convex in the direction $\pi / 2$.

Step 2; Let $G(\zeta)=h(1 / \zeta)+g(1 / \zeta)$ on $0<|\zeta|<1$. Then the function $G(\zeta)=\frac{1}{\zeta}+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) \zeta^{k}$ is regular and convex in the direction of the imaginary axis and real on the real axis. Thus, on $|\zeta|=r(0<r<1)$,

$$
\operatorname{Im}\left\{\zeta G^{\prime}(\zeta)\right\}=-\frac{\partial}{\partial \theta} \operatorname{Re}\left\{G\left(r e^{i \theta}\right)\right\} \begin{cases}>0 & \text { for } 0<\theta<\pi \\ <0 & \text { for } \pi<\theta<2 \pi .\end{cases}
$$

Let $K(\zeta)=\zeta G^{\prime}(\zeta)$ and, define

$$
\varphi_{\rho}(\zeta)=\frac{K(\rho \zeta)}{F(\zeta)} \text { for } 0<\rho<1
$$

where $F(\zeta)=-\frac{1}{\zeta}+\zeta=-\frac{1}{\zeta}+\sum_{k=0}^{\infty} \alpha_{k} \zeta^{k}$. Then φ_{ρ} is analytic in $\overline{\mathbb{D}}=\{\zeta$: $|\zeta| \leq 1\}$ except for simple poles at $\zeta= \pm 1$ and

$$
\operatorname{Re}\left\{\varphi_{\rho}\left(e^{i \theta}\right)\right\}=\frac{1}{2 \sin \theta} \operatorname{Im}\left\{K\left(\rho e^{i \theta}\right)\right\}>0 .
$$

It follows from the maximum principle for harmonic functions that $\operatorname{Re}\left\{\varphi_{\rho}(\zeta)\right\}$ >0 for $|\zeta|<1$. Letting ρ tend to 1 , we have that

$$
\operatorname{Re}\left\{\frac{K(\zeta)}{F(\zeta)}\right\}>0 \text { for }|\zeta|<1 .
$$

From $\operatorname{Re}\left\{\frac{K(\zeta)}{F(\zeta)}\right\}=\operatorname{Re}\left\{\frac{\zeta G^{\prime}(\zeta)}{F(\zeta)}\right\}>0$ and $\frac{\zeta G^{\prime}(\zeta)}{F(\zeta)}=1$ at $\zeta=0$, there exists a bounded regular function $\omega(\zeta)$, with $\omega(0)=0$ and $|\omega(\zeta)|<1$ in $|\zeta|<1$, such that

$$
\frac{\zeta G^{\prime}(\zeta)}{F(\zeta)}=\frac{1+\omega(\zeta)}{1-\omega(\zeta)}
$$

This implies that

$$
\left[\zeta F(\zeta)+\zeta^{2} G^{\prime}(\zeta)\right] \omega(\zeta)=\zeta^{2} G^{\prime}(\zeta)-\zeta F(\zeta)
$$

Let $G(\zeta)=\frac{1}{\zeta}+\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) \zeta^{k}=\frac{1}{\zeta}+\sum_{k=0}^{\infty} c_{k} \zeta^{k}$, then we have

$$
\begin{gathered}
{\left[-2+\sum_{k=0}^{\infty}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right] \omega(\zeta)=\sum_{k=0}^{\infty}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}} \\
{\left[-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right] \omega(\zeta)=\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}} \\
\quad-\sum_{k=n}^{\infty}\left(k c_{k}+\alpha_{k}\right) \omega(\zeta) \zeta^{k+1}+\sum_{k=n+1}^{\infty}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1} \\
=\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}+\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}
\end{gathered}
$$

where $\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}$ converges in $|\zeta|<1$. Let $\zeta=r e^{i \theta}(r<1)$. Then integrations give

$$
\begin{aligned}
4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} & \geq 4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} r^{2 k+2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right|^{2} d \theta \\
& \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|-2+\sum_{k=0}^{n-1}\left(k c_{k}+\alpha_{k}\right) \zeta^{k+1}\right|^{2}|\omega(\zeta)|^{2} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=0}^{n}\left(k c_{k}-\alpha_{k}\right) \zeta^{k+1}+\sum_{k=n+2}^{\infty} \beta_{k} \zeta^{k}\right|^{2} d \theta \\
& \geq \sum_{k=0}^{n}\left|k c_{k}-\alpha_{k}\right|^{2} r^{2 k+2}
\end{aligned}
$$

Letting $r \rightarrow 1$, we have that

$$
4+\sum_{k=0}^{n-1}\left|k c_{k}+\alpha_{k}\right|^{2} \geq \sum_{k=0}^{n}\left|k c_{k}-\alpha_{k}\right|^{2}
$$

$$
\begin{align*}
\left|n c_{n}-\alpha_{n}\right|^{2} & \leq 4+\sum_{k=0}^{n-1}\left(\left|k c_{k}+\alpha_{k}\right|^{2}-\left|k c_{k}-\alpha_{k}\right|^{2}\right) \tag{2.2}\\
& =4+4 \sum_{k=0}^{n-1} k \operatorname{Re}\left\{c_{k} \bar{\alpha}_{k}\right\} .
\end{align*}
$$

Since $\alpha_{1}=1$ and $\alpha_{n}=0$ for $n>1$, we obtain from (2.2) with $n=1$ that

$$
\left|c_{1}-1\right|^{2} \leq 4, \quad-1 \leq c_{1} \leq 3
$$

and, for $n>1$,

$$
n^{2}\left|c_{n}\right|^{2} \leq 4+4 c_{1} \leq 16, \quad\left|c_{n}\right| \leq \frac{4}{n} .
$$

From these, we finally get

$$
\begin{aligned}
-1 \leq a_{1}+b_{1} & \leq 3 \\
\left|a_{n}+b_{n}\right| \leq \frac{2 \sqrt{1+a_{1}+b_{1}}}{n} & \leq \frac{4}{n} \quad \text { for } n>1 .
\end{aligned}
$$

Theorem 2.6. If $f \in \Sigma$ with real A is an odd function convex in the direction of the real axis and if the coefficients a_{n}, b_{n} are all real, then

$$
\begin{gathered}
-1 \leq b_{1}-a_{1} \leq 3 \\
\left|a_{n}-b_{n}\right| \leq \frac{2 \sqrt{1+b_{1}-a_{1}}}{n} \leq \frac{4}{n} \quad \text { for } \text { odd } n>1 .
\end{gathered}
$$

Proof. By Theorem 2.4, $h-g$ is conformal and convex in the direction of the real axis in Δ. Let $G(\zeta)=i\left\{h\left(\frac{1}{i \zeta}\right)-g\left(\frac{1}{i \zeta}\right)\right\}=\frac{1}{\zeta}-\left(a_{1}-b_{1}\right) \zeta+\left(a_{3}-\right.$ $\left.b_{3}\right) \zeta^{3}-\cdots=\frac{1}{\zeta}+\sum_{k=0}^{\infty} c_{k} \zeta^{k}$ on $0<|\zeta|<1$. Then $G(\zeta)$ is regular and convex in the direction of the imaginary axis, in $0<|\zeta|<1$, and real on the real axis. By following the same process as the step 2 in the proof of Theorem 2.5, we obtain

$$
\begin{gathered}
-1 \leq b_{1}-a_{1} \leq 3 \\
\left|a_{n}-b_{n}\right| \leq \frac{2 \sqrt{1+b_{1}-a_{1}}}{n} \leq \frac{4}{n} \quad \text { for odd } n>1
\end{gathered}
$$

References

[1] P. L. Duren, Univalent functions, Springer-Verlag, N. Y. 1983.
[2] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[3] W. Hengartner and G. Schober, Univalent harmonic exterior and ring mappings, J. Math. Anal. Appl. 156 (1991), 154-171.
[4] S. H. Jun, Planar harmonic mappings and curvature estimates, J. Korean Math. Soc. 32 (1995), 803-814.
*
Department of Mathematics
Seoul Women's University
Seoul 139-774, Republic of Korea
E-mail: shjun@ swu.ac.kr

[^0]: Received August 24, 2009; Accepted November 06, 2009.
 2000 Mathematics Subject Classifications: Primary 30C45, 30C50.
 Key words and phrases: harmonic, univalent mappings
 This work was supported by a special research grant from Seoul Women's University (2009).

