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STUDY ON UNIVALENT HARMONIC MAPPINGS

Sook Heui Jun*

Abstract. In this paper, we obtain some coefficient bounds of harmonic
univalent mappings on ∆ = {z : |z| > 1} which are starlike, convex, or
convex in one direction.

1. Introduction

A harmonic univalent orientation-preserving mapping f from ∆ = {z :

|z| > 1} onto a simply connected domain in the extended complex plane C∗

containing the point at infinity, which keep infinity fixed, is of the form

(1.1) f(z) = h(z) + g(z) + Alog|z|

where

h(z) = z +
∞∑

k=1

akz−k and g(z) =
∞∑

k=1

bkz−k

are analytic in ∆ and A ∈ C. The orientation-preserving and univalent

properties imply that the Jacobian |fz|2 − |fz̄|2 is positive and so

|fz̄(z)| =
∣∣∣∣g′(z) +

A

2z

∣∣∣∣ < |fz(z)| =
∣∣∣∣h′(z) +

A

2z

∣∣∣∣ .

The set of all harmonic, orientation-preserving, univalent mappings with

the form (1.1) is denoted here by Σ. The study of harmonic univalent

orientation-preserving mappings defined on ∆ = {z : |z| > 1} with f(∞) =

∞ was started by Hengartner and Schober[2]. Especially they studied the

subclass ΣR of all functions in Σ that map ∆ = {z : |z| > 1} onto the
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complement of a real line segment. They showed that functions in ΣR can

be represented, but in a nonlinear fashion, in terms of probability measures

on the unit circle, and they also obtained some sharp coefficient estimates

as applications.

In this paper, we consider harmonic orientation-preserving univalent map-

pings f in Σ which are starlike, convex, or convex in one direction. In next

section, we obtain inequality

∞∑

k=1

k(|ak|2 − |bk|2) ≤ 1 + 2Re{b1}

when f ∈ Σ is starlike, and show that this estimate is sharp for f(z) =

z − 1
z̄ + 2log|z|, which maps ∆ onto C\{0}. In Theorem 2.5 and Theorem

2.6, we also obtain some coefficient estimates for f ∈ Σ which is convex or

convex in one direction by using the fact that for an analytic function ϕ(ζ)

with Re{ϕ(ζ)} > 0 and ϕ(0) = 1 in |ζ| < 1, there exists a bounded regular

function ω(ζ), with ω(0) = 0 and |ω(ζ)| < 1 in |ζ| < 1, such that

ϕ(ζ) =
1 + ω(ζ)
1− ω(ζ)

.

2. Mappings to special domains

Definition 2.1. If for each r (r > 1) the image curve f(|z| = r) has

the property that each straight line parallel to some fixed direction cuts

f(|z| = r) in at most two points, we say that f(z) is convex in that direction.

Definition 2.2. Let f be a mapping in Σ.

(1) f is starlike if each radial line from the origin hits the boundary

∂f(∆) in exactly one point[3].

(2) f is convex if f maps ∆ onto a domain whose complement is convex.

Theorem 2.3. If f ∈ Σ is starlike, then

∞∑

k=1

k(|ak|2 − |bk|2) ≤ 1 + 2Re{b1}.
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This estimate is sharp for f(z) = z− 1
z̄ +2log|z|, which maps ∆ onto C\{0}.

Proof. A starlike function is characterized by the condition

∂

∂θ
{argf(reiθ)} > 0

for r > 1. But argf(reiθ) = Im{logf(reiθ)}, so that

∂

∂θ

(
Im{logf(reiθ)}) = Im

{
∂

∂θ
logf(reiθ)

}

= Re

{
zh′ − zg′

f

}
> 0.

From this, we have that ∣∣∣∣∣∣
1− zh′−zg′

f

1 + zh′−zg′
f

∣∣∣∣∣∣
< 1.

Thus

(2.1) |f − (zh′ − zg′)|2 < |f + (zh′ − zg′)|2.

An integration of the left side of (2.1) gives

1
2π

∫ 2π

0

|f(reiθ)− reiθh′(reiθ) + reiθg′(reiθ)|2 dθ

=
1
2π

∫ 2π

0

(f − reiθh′ + reiθg′)(f̄ − reiθh′ + reiθg′) dθ

=
1
2π

∫ 2π

0

P (θ)P (θ) dθ

=
∞∑

k=1

(1 + k)2|ak|2r−2k +
∞∑

k=1

(1− k)2|bk|2r−2k + |A|2(log r)2,

where

P (θ) =
∞∑

k=1

(1 + k)ak(reiθ)−k +
∞∑

k=1

(1− k)bk(re−iθ)−k + Alog r.
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An integration of the right side of (2.1) gives

1
2π

∫ 2π

0

|f(reiθ) + reiθh′(reiθ)− reiθg′(reiθ)|2 dθ

=
1
2π

∫ 2π

0

(f + reiθh′ − reiθg′)(f̄ + reiθh′ − reiθg′) dθ

= 4r2 + 4b1 + 4b1 +
∞∑

k=1

(1− k)2|ak|2r−2k

+
∞∑

k=1

(1 + k)2|bk|2r−2k + |A|2(log r)2.

Therefore

1
2π

∫ 2π

0

|f − reiθh′ + reiθg′|2 dθ <
1
2π

∫ 2π

0

|f + reiθh′ − reiθg′|2 dθ

implies that
∞∑

k=1

(1 + k)2|ak|2r−2k +
∞∑

k=1

(1− k)2|bk|2r−2k + |A|2(log r)2

< 4(r2 + b1 + b1) +
∞∑

k=1

(1− k)2|ak|2r−2k

+
∞∑

k=1

(1 + k)2|bk|2r−2k + |A|2(log r)2.

Simplify this, then we obtain
∞∑

k=1

k(|ak|2 − |bk|2)r−2k < r2 + b1 + b1

for r > 1. Letting r → 1, we have that
∞∑

k=1

k(|ak|2 − |bk|2) ≤ 1 + 2Re{b1}.

¤

Theorem 2.4. ([4, Theorem 2.5.]) If f ∈ Σ with real A is convex in the

direction of the real axis, then h−g is conformal and convex in the direction

of the real axis in ∆.
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Theorem 2.5. If f ∈ Σ with A = 0 is convex and if the coefficients

an, bn are all real, then

−1 ≤ a1 + b1 ≤ 3,

|an + bn| ≤ 2
√

1 + a1 + b1

n
≤ 4

n
for n > 1.

Proof. Step 1; Since f is convex, e−iφ/2f = e−iφ/2h + e−iφ/2ḡ is also

convex. Thus e−iφ/2f is convex in the direction of the real axis. This

implies that e−iφ/2h− eiφ/2g is conformal and convex in the direction of the

real axis in ∆ by Theorem 2.4. Hence, h − eiφg is convex in the direction

φ/2 and analytic function h + g = z +
∑∞

k=1(ak + bk)z−k is convex in the

direction π/2.

Step 2; Let G(ζ) = h(1/ζ) + g(1/ζ) on 0 < |ζ| < 1. Then the function

G(ζ) = 1
ζ +

∑∞
k=1(ak + bk)ζk is regular and convex in the direction of the

imaginary axis and real on the real axis. Thus, on |ζ| = r (0 < r < 1),

Im{ζG′(ζ)} = − ∂

∂θ
Re{G(reiθ)}

{
> 0 for 0 < θ < π

< 0 for π < θ < 2π.

Let K(ζ) = ζG′(ζ) and, define

ϕρ(ζ) =
K(ρζ)
F (ζ)

for 0 < ρ < 1,

where F (ζ) = − 1
ζ + ζ = − 1

ζ +
∑∞

k=0 αkζk. Then ϕρ is analytic in D = {ζ :

|ζ| ≤ 1} except for simple poles at ζ = ±1 and

Re{ϕρ(eiθ)} =
1

2sinθ
Im{K(ρeiθ)} > 0.

It follows from the maximum principle for harmonic functions that Re{ϕρ(ζ)}
> 0 for |ζ| < 1. Letting ρ tend to 1, we have that

Re

{
K(ζ)
F (ζ)

}
> 0 for |ζ| < 1.

From Re
{

K(ζ)
F (ζ)

}
= Re

{
ζG′(ζ)
F (ζ)

}
> 0 and ζG′(ζ)

F (ζ) = 1 at ζ = 0, there exists

a bounded regular function ω(ζ), with ω(0) = 0 and |ω(ζ)| < 1 in |ζ| < 1,

such that
ζG′(ζ)
F (ζ)

=
1 + ω(ζ)
1− ω(ζ)

.
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This implies that

[ζF (ζ) + ζ2G′(ζ)]ω(ζ) = ζ2G′(ζ)− ζF (ζ).

Let G(ζ) = 1
ζ +

∑∞
k=1(ak + bk)ζk = 1

ζ +
∑∞

k=0 ckζk, then we have

[−2 +
∞∑

k=0

(kck + αk)ζk+1]ω(ζ) =
∞∑

k=0

(kck − αk)ζk+1,

[−2 +
n−1∑

k=0

(kck + αk)ζk+1]ω(ζ) =
n∑

k=0

(kck − αk)ζk+1

−
∞∑

k=n

(kck + αk)ω(ζ)ζk+1 +
∞∑

k=n+1

(kck − αk)ζk+1

=
n∑

k=0

(kck − αk)ζk+1 +
∞∑

k=n+2

βkζk,

where
∑∞

k=n+2 βkζk converges in |ζ| < 1. Let ζ = reiθ (r < 1). Then

integrations give

4 +
n−1∑

k=0

|kck + αk|2 ≥ 4 +
n−1∑

k=0

|kck + αk|2r2k+2

=
1
2π

∫ 2π

0

| − 2 +
n−1∑

k=0

(kck + αk)ζk+1|2dθ

≥ 1
2π

∫ 2π

0

| − 2 +
n−1∑

k=0

(kck + αk)ζk+1|2|ω(ζ)|2dθ

=
1
2π

∫ 2π

0

|
n∑

k=0

(kck − αk)ζk+1 +
∞∑

k=n+2

βkζk|2dθ

≥
n∑

k=0

|kck − αk|2r2k+2.

Letting r → 1, we have that

4 +
n−1∑

k=0

|kck + αk|2 ≥
n∑

k=0

|kck − αk|2,
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|ncn − αn|2 ≤ 4 +
n−1∑

k=0

(|kck + αk|2 − |kck − αk|2)

= 4 + 4
n−1∑

k=0

k Re{ckᾱk}.

(2.2)

Since α1 = 1 and αn = 0 for n > 1, we obtain from (2.2) with n = 1 that

|c1 − 1|2 ≤ 4, −1 ≤ c1 ≤ 3

and, for n > 1,

n2|cn|2 ≤ 4 + 4c1 ≤ 16, |cn| ≤ 4
n

.

From these, we finally get

−1 ≤ a1 + b1 ≤ 3,

|an + bn| ≤ 2
√

1 + a1 + b1

n
≤ 4

n
for n > 1.

¤

Theorem 2.6. If f ∈ Σ with real A is an odd function convex in the

direction of the real axis and if the coefficients an, bn are all real, then

−1 ≤ b1 − a1 ≤ 3,

|an − bn| ≤ 2
√

1 + b1 − a1

n
≤ 4

n
for odd n > 1.

Proof. By Theorem 2.4, h − g is conformal and convex in the direction

of the real axis in ∆. Let G(ζ) = i{h( 1
iζ )− g( 1

iζ )} = 1
ζ − (a1 − b1)ζ + (a3 −

b3)ζ3−· · · = 1
ζ +

∑∞
k=0 ckζk on 0 < |ζ| < 1. Then G(ζ) is regular and convex

in the direction of the imaginary axis, in 0 < |ζ| < 1, and real on the real

axis. By following the same process as the step 2 in the proof of Theorem

2.5, we obtain

−1 ≤ b1 − a1 ≤ 3,

|an − bn| ≤ 2
√

1 + b1 − a1

n
≤ 4

n
for odd n > 1.

¤
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