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STUDY ON UNIVALENT HARMONIC MAPPINGS

Sook Heur Jun*

ABSTRACT. In this paper, we obtain some coefficient bounds of harmonic
univalent mappings on A = {z : |z| > 1} which are starlike, convex, or
convex in one direction.

1. Introduction
A harmonic univalent orientation-preserving mapping f from A = {z :
|z| > 1} onto a simply connected domain in the extended complex plane C*

containing the point at infinity, which keep infinity fixed, is of the form

(1.1) f(2) = h(z) + g(2) + Alog|z|
where - -
h(z) =z+ Z apz”® and g(z) = Z bz "
k=1 k=1

are analytic in A and A € C. The orientation-preserving and univalent

properties imply that the Jacobian |f,|?> — |fz|? is positive and so

2(2)| = =

g'<z>+‘4\ <1f(2)] =

A
X — .
&+ 3]

The set of all harmonic, orientation-preserving, univalent mappings with
the form (1.1) is denoted here by X. The study of harmonic univalent
orientation-preserving mappings defined on A = {z : |z| > 1} with f(o0) =
oo was started by Hengartner and Schober[2]. Especially they studied the
subclass ¥ of all functions in ¥ that map A = {z : |2| > 1} onto the
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complement of a real line segment. They showed that functions in ¥ g can
be represented, but in a nonlinear fashion, in terms of probability measures
on the unit circle, and they also obtained some sharp coefficient estimates
as applications.

In this paper, we consider harmonic orientation-preserving univalent map-
pings f in ¥ which are starlike, convex, or convex in one direction. In next

section, we obtain inequality

> k(lar]® = be]?) < 1+ 2Re{by}

k=1
when f € ¥ is starlike, and show that this estimate is sharp for f(z) =
+ 2log|z|, which maps A onto C\{0}. In Theorem 2.5 and Theorem

2.6, we also obtain some coefficient estimates for f € ¥ which is convex or

z —

convex in one direction by using the fact that for an analytic function ¢(()
with Re{¢({)} > 0 and ¢(0) =1 in || < 1, there exists a bounded regular
function w((), with w(0) =0 and |w(¢)| < 1 in || < 1, such that

14 w(Q)

©(¢) = 1—7w(C)

2. Mappings to special domains

DEFINITION 2.1. If for each r (r > 1) the image curve f(|z| = r) has
the property that each straight line parallel to some fixed direction cuts
f(|z| = r) in at most two points, we say that f(z) is convex in that direction.

DEFINITION 2.2. Let f be a mapping in 3.

(1) f is starlike if each radial line from the origin hits the boundary
Jf(A) in exactly one point[3].

(2) fisconvexif f maps A onto a domain whose complement is convex.

THEOREM 2.3. If f € ¥ is starlike, then

> k(|lax]® = [bk]?) < 1+ 2Re{by }.
k=1
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This estimate is sharp for f(z) = z— 1 +2log|z|, which maps A onto C\{0}.

Proof. A starlike function is characterized by the condition

(%{argf(reie)} >0

for r > 1. But argf(re'®) = Im{logf(re?’)}, so that

889 (Im{logf(reie)}) = Im{aaelogf(re )}

zh! —zg’}
=Req ———— > 0.
{ f

From this, we have that

1 _ Zh/—TQI
—I— <1
zh!—zg
1+ 5
Thus
(2.1) |f = (zh = 2g")|> < |f + (20" = zg)%.

An integration of the left side of (2.1) gives

1 2 : : : — v
— |f(re'®) — relh/ (re®) + reif g (rei)|* do
2m J
1 2m . _
=5 (f —reh +reif g (f —re®h +req’) do
0
1 27
= — (0)P(0) do
27T 0
=Y (U + k) arlr= + D (1= k)2 [orr=>* 4 |A](log r)?,
k=1 k=1
where
P(0) :Z(1+k ap(re’ k-l-z (re= )% + Alog r.
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An integration of the right side of (2.1) gives

1 2 . : . — v
Py |£(re®) + e/ (re??) — reif g (rei®)|? db
T
1 27 .
= o J, (f +ren —reifg)(f + rein’ —rei®y’) do
T
= 4r? +4b1+4b1+z (1 — k)?|a[>r— 2

k=1

+ Z (1 4+ E)2|bg|?r=2F 4 |A]2(log 7).
k=1

Therefore
1 27 ) 7 1 27 ) -
— |f —re®h 4+ reifg|? d < / |f +re®h —reifg|? db
2 Jo 2 Jo
implies that
> (4 k) laxPr=? + ) (1 = k)2 [bel*r~*F + |A]* (log r)?
k=1 k=1

Ar® + by +b1) + > (1 — k)P ag*r—"

M T

+ (1+ k)2|bk]2r_2k + ]A]Z(log T)Z.

B
Il
_

Simplify this, then we obtain
ik(|ak|2 — b)) <2 £ by + by
for r > 1. Letting » — 1, we have that
ik(\ak\Q — [be|?) < 1+ 2Re{by}.

O

THEOREM 2.4. ([4, Theorem 2.5.]) If f € ¥ with real A is convex in the
direction of the real axis, then h— g is conformal and convex in the direction

of the real axis in A.
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THEOREM 2.5. If f € ¥ with A = 0 is convex and if the coefficients
an, by are all real, then

_1§a1+b1§37

2v1+a; + by 4
n n

lan + by| < < for n>1.

Proof. Step 1; Since f is convex, e “¢/2f = e~i9/2h 4 ¢7%/25 is also
convex. Thus e */2f is convex in the direction of the real axis. This
implies that e=%%/2h — €'%/2¢g is conformal and convex in the direction of the
real axis in A by Theorem 2.4. Hence, h — e'®g is convex in the direction
¢/2 and analytic function h+ g = z + > o, (ay + b)2~" is convex in the
direction /2.

Step 2; Let G(¢) = h(1/¢) + g(1/¢) on 0 < |¢| < 1. Then the function
G = % + > p0 (ag + by)C" is regular and convex in the direction of the

imaginary axis and real on the real axis. Thus, on || =7 (0 <r < 1),

GG (@) = - gpRelGre )N
Let K(¢) = (G'(¢) and, define

©p(C) = K(pc) for 0 < p <1,

F(¢)
where F({) = —% +(= —% + Yoo akC®. Then ¢, is analytic in D = {¢ :
|¢| < 1} except for simple poles at ( = +1 and

0\ _
Re{ep(e™)} = 2sind

It follows from the maximum principle for harmonic functions that Re{y,(¢)}

>0 forO<bl<m
<0 form<0<2m.

Im{K(pei®)} > 0.

> 0 for |¢| < 1. Letting p tend to 1, we have that

K(C)}

Req ——=>= >0 for |(|] < 1.

VR !

From Re {%} = Re {Cgég)} > 0 and ng(g) =1 at ( = 0, there exists

a bounded regular function w(¢), with w(0) = 0 and |w(¢)| < 1 in [{| < 1,

such that
(G'(Q) _ 1+w(Q)

FO)  1-w(Q)
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This implies that
[CF(¢) + (G (O)w(¢) = ¢2G"(¢) — CF(Q).

Let G(¢) = % + Y0 (ak + bg)CF = % + > e ek, then we have

-2+ Z key, + Oék Ck+1 Z ke, — Ck—H
k=0 k=0
n—1 n
(24> (kex + ap) M Mw(Q) = D (key — ag) M
k=0 k=0

- i(kck +ap)w (¢ + i (ker — o) ¢FH

k=n+1
= (ke —ap)C"+ > Blh,
k=0 k=n+2

where 27 L, B¢ converges in [¢| < 1. Let ¢ = re” (r < 1). Then

integrations give

n—1 n—1
4+ Z ke + o|® > 4+ Z |kew + ag[Pr?F T2
k=0 k=0
1 = k+12
= oo [ 124 Y then + an)cH P
k=0
1 27 n—1
> o [ =2 Y ket )Pl ds
0 k=0
1 & s k|2
=5 |Zk‘ck—ak + Zﬁk(\da
=0 k=n+2
> Z \kck — Oék|2’l“2k+2.
k=0

Letting » — 1, we have that

n—1 n
4+ Z |kep 4+ agl* > Z |keg — ap?,

k=0 k=0
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n—1

(2.2) nen — on)? <4+ ) (lker + al® — ke — op]?)
k=0

n—1

=444k Re{cpa}.
k=0

Since o3 = 1 and o, = 0 for n > 1, we obtain from (2.2) with n =1 that
lep — 11> <4, —1<¢ <3

and, for n > 1,

n?len|? <4+4c; <16, |e,| < %
From these, we finally get
—1<a1+b; <3,
|y + byl §21+al+bl g% for n>1

O

THEOREM 2.6. If f € ¥ with real A is an odd function convex in the

direction of the real axis and if the coefficients a,,, b, are all real, then
—-1< bl —ay < 37

2\/1—|—b1—a1 4
n n

lan — by| < < for oddn > 1.

Proof. By Theorem 2.4, h — g is conformal and convex in the direction
of the real axis in A. Let G(() = z{h(%) - g(%)} = % — (a1 —b1)¢ + (a3 —
b3)(3—-- = %"‘Z;‘;o cxC® on 0 < [¢] < 1. Then G(() is regular and convex
in the direction of the imaginary axis, in 0 < |¢| < 1, and real on the real
axis. By following the same process as the step 2 in the proof of Theorem
2.5, we obtain

_1§b1_a1§37

2v/1 4+ by — 4
|an—bn|§M§— for odd n > 1.
n n
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