STUDY ON UNIVALENT HARMONIC MAPPINGS

SOOK HEUI JUN*

ABSTRACT. In this paper, we obtain some coefficient bounds of harmonic univalent mappings on $\Delta = \{z : |z| > 1\}$ which are starlike, convex, or convex in one direction.

1. Introduction

A harmonic univalent orientation-preserving mapping f from $\Delta = \{z : |z| > 1\}$ onto a simply connected domain in the extended complex plane \mathbb{C}^* containing the point at infinity, which keep infinity fixed, is of the form

(1.1)
$$f(z) = h(z) + \overline{g(z)} + Alog|z|$$

where

$$h(z) = z + \sum_{k=1}^{\infty} a_k z^{-k}$$
 and $g(z) = \sum_{k=1}^{\infty} b_k z^{-k}$

are analytic in Δ and $A \in \mathbb{C}$. The orientation-preserving and univalent properties imply that the Jacobian $|f_z|^2 - |f_{\bar{z}}|^2$ is positive and so

$$|f_{\overline{z}}(z)| = \left|g'(z) + \frac{\overline{A}}{2z}\right| < |f_z(z)| = \left|h'(z) + \frac{A}{2z}\right|.$$

The set of all harmonic, orientation-preserving, univalent mappings with the form (1.1) is denoted here by Σ . The study of harmonic univalent orientation-preserving mappings defined on $\Delta = \{z : |z| > 1\}$ with $f(\infty) = \infty$ was started by Hengartner and Schober[2]. Especially they studied the subclass Σ_R of all functions in Σ that map $\Delta = \{z : |z| > 1\}$ onto the

Received August 24, 2009; Accepted November 06, 2009.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 30C45, 30C50.

Key words and phrases: harmonic, univalent mappings

This work was supported by a special research grant from Seoul Women's University (2009).

complement of a real line segment. They showed that functions in Σ_R can be represented, but in a nonlinear fashion, in terms of probability measures on the unit circle, and they also obtained some sharp coefficient estimates as applications.

In this paper, we consider harmonic orientation-preserving univalent mappings f in Σ which are starlike, convex, or convex in one direction. In next section, we obtain inequality

$$\sum_{k=1}^{\infty} k(|a_k|^2 - |b_k|^2) \le 1 + 2Re\{b_1\}$$

when $f \in \Sigma$ is starlike, and show that this estimate is sharp for $f(z) = z - \frac{1}{\overline{z}} + 2\log|z|$, which maps Δ onto $\mathbb{C}\setminus\{0\}$. In Theorem 2.5 and Theorem 2.6, we also obtain some coefficient estimates for $f \in \Sigma$ which is convex or convex in one direction by using the fact that for an analytic function $\varphi(\zeta)$ with $Re\{\varphi(\zeta)\} > 0$ and $\varphi(0) = 1$ in $|\zeta| < 1$, there exists a bounded regular function $\omega(\zeta)$, with $\omega(0) = 0$ and $|\omega(\zeta)| < 1$ in $|\zeta| < 1$, such that

$$\varphi(\zeta) = \frac{1 + \omega(\zeta)}{1 - \omega(\zeta)}$$

2. Mappings to special domains

DEFINITION 2.1. If for each r (r > 1) the image curve f(|z| = r) has the property that each straight line parallel to some fixed direction cuts f(|z| = r) in at most two points, we say that f(z) is convex in that direction. DEFINITION 2.2. Let f be a mapping in Σ .

- (1) f is starlike if each radial line from the origin hits the boundary $\partial f(\Delta)$ in exactly one point[3].
- (2) f is convex if f maps Δ onto a domain whose complement is convex.

THEOREM 2.3. If $f \in \Sigma$ is starlike, then

$$\sum_{k=1}^{\infty} k(|a_k|^2 - |b_k|^2) \le 1 + 2Re\{b_1\}.$$

This estimate is sharp for $f(z) = z - \frac{1}{\overline{z}} + 2\log|z|$, which maps Δ onto $\mathbb{C} \setminus \{0\}$.

Proof. A starlike function is characterized by the condition

$$\frac{\partial}{\partial \theta}\{argf(re^{i\theta})\}>0$$

for r > 1. But $argf(re^{i\theta}) = Im\{logf(re^{i\theta})\}$, so that

$$\begin{split} \frac{\partial}{\partial \theta} \left(Im\{logf(re^{i\theta})\} \right) &= Im\left\{ \frac{\partial}{\partial \theta} logf(re^{i\theta}) \right\} \\ &= Re\left\{ \frac{zh' - \overline{zg'}}{f} \right\} > 0. \end{split}$$

From this, we have that

$$\left|\frac{1-\frac{zh'-\overline{zg'}}{f}}{1+\frac{zh'-\overline{zg'}}{f}}\right| < 1.$$

Thus

(2.1)
$$|f - (zh' - \overline{zg'})|^2 < |f + (zh' - \overline{zg'})|^2.$$

An integration of the left side of (2.1) gives

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta}) - re^{i\theta}h'(re^{i\theta}) + \overline{re^{i\theta}g'(re^{i\theta})}|^2 \ d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} (f - re^{i\theta}h' + \overline{re^{i\theta}g'})(\overline{f} - \overline{re^{i\theta}h'} + re^{i\theta}g') \ d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} P(\theta)\overline{P(\theta)} \ d\theta \\ &= \sum_{k=1}^\infty (1+k)^2 |a_k|^2 r^{-2k} + \sum_{k=1}^\infty (1-k)^2 |b_k|^2 r^{-2k} + |A|^2 (\log r)^2, \end{split}$$

where

$$P(\theta) = \sum_{k=1}^{\infty} (1+k)a_k (re^{i\theta})^{-k} + \sum_{k=1}^{\infty} (1-k)\overline{b_k} (re^{-i\theta})^{-k} + Alog \ r.$$

An integration of the right side of (2.1) gives

$$\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta}) + re^{i\theta}h'(re^{i\theta}) - \overline{re^{i\theta}g'(re^{i\theta})}|^2 \, d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} (f + re^{i\theta}h' - \overline{re^{i\theta}g'})(\bar{f} + \overline{re^{i\theta}h'} - re^{i\theta}g') \, d\theta \\ &= 4r^2 + 4\overline{b_1} + 4b_1 + \sum_{k=1}^{\infty} (1-k)^2 |a_k|^2 r^{-2k} \\ &+ \sum_{k=1}^{\infty} (1+k)^2 |b_k|^2 r^{-2k} + |A|^2 (\log r)^2. \end{aligned}$$

Therefore

$$\frac{1}{2\pi}\int_0^{2\pi}|f-re^{i\theta}h'+\overline{re^{i\theta}g'}|^2\ d\theta<\frac{1}{2\pi}\int_0^{2\pi}|f+re^{i\theta}h'-\overline{re^{i\theta}g'}|^2\ d\theta$$

implies that

$$\begin{split} \sum_{k=1}^{\infty} (1+k)^2 |a_k|^2 r^{-2k} + \sum_{k=1}^{\infty} (1-k)^2 |b_k|^2 r^{-2k} + |A|^2 (\log r)^2 \\ < 4(r^2 + \overline{b_1} + b_1) + \sum_{k=1}^{\infty} (1-k)^2 |a_k|^2 r^{-2k} \\ + \sum_{k=1}^{\infty} (1+k)^2 |b_k|^2 r^{-2k} + |A|^2 (\log r)^2. \end{split}$$

Simplify this, then we obtain

$$\sum_{k=1}^{\infty} k(|a_k|^2 - |b_k|^2)r^{-2k} < r^2 + \overline{b_1} + b_1$$

for r > 1. Letting $r \to 1$, we have that

$$\sum_{k=1}^{\infty} k(|a_k|^2 - |b_k|^2) \le 1 + 2Re\{b_1\}.$$

THEOREM 2.4. ([4, Theorem 2.5.]) If $f \in \Sigma$ with real A is convex in the direction of the real axis, then h-g is conformal and convex in the direction of the real axis in Δ .

THEOREM 2.5. If $f \in \Sigma$ with A = 0 is convex and if the coefficients a_n, b_n are all real, then

$$\begin{aligned} & -1 \le a_1 + b_1 \le 3, \\ & a_n + b_n | \le \frac{2\sqrt{1 + a_1 + b_1}}{n} \le \frac{4}{n} \quad for \quad n > 1. \end{aligned}$$

Proof. Step 1; Since f is convex, $e^{-i\phi/2}f = e^{-i\phi/2}h + e^{-i\phi/2}\bar{g}$ is also convex. Thus $e^{-i\phi/2}f$ is convex in the direction of the real axis. This implies that $e^{-i\phi/2}h - e^{i\phi/2}g$ is conformal and convex in the direction of the real axis in Δ by Theorem 2.4. Hence, $h - e^{i\phi}g$ is convex in the direction $\phi/2$ and analytic function $h + g = z + \sum_{k=1}^{\infty} (a_k + b_k) z^{-k}$ is convex in the direction $\pi/2$.

Step 2; Let $G(\zeta) = h(1/\zeta) + g(1/\zeta)$ on $0 < |\zeta| < 1$. Then the function $G(\zeta) = \frac{1}{\zeta} + \sum_{k=1}^{\infty} (a_k + b_k)\zeta^k$ is regular and convex in the direction of the imaginary axis and real on the real axis. Thus, on $|\zeta| = r \ (0 < r < 1)$,

$$Im\{\zeta G'(\zeta)\} = -\frac{\partial}{\partial \theta} Re\{G(re^{i\theta})\} \begin{cases} > 0 & \text{for } 0 < \theta < \pi \\ < 0 & \text{for } \pi < \theta < 2\pi. \end{cases}$$

Let $K(\zeta) = \zeta G'(\zeta)$ and, define

$$\varphi_{\rho}(\zeta) = \frac{K(\rho\zeta)}{F(\zeta)} \text{ for } 0 < \rho < 1,$$

where $F(\zeta) = -\frac{1}{\zeta} + \zeta = -\frac{1}{\zeta} + \sum_{k=0}^{\infty} \alpha_k \zeta^k$. Then φ_{ρ} is analytic in $\overline{\mathbb{D}} = \{\zeta : |\zeta| \le 1\}$ except for simple poles at $\zeta = \pm 1$ and

$$Re\{\varphi_{\rho}(e^{i\theta})\} = \frac{1}{2sin\theta} Im\{K(\rho e^{i\theta})\} > 0.$$

It follows from the maximum principle for harmonic functions that $Re\{\varphi_{\rho}(\zeta)\}$ > 0 for $|\zeta| < 1$. Letting ρ tend to 1, we have that

$$Re\left\{\frac{K(\zeta)}{F(\zeta)}\right\} > 0 \text{ for } |\zeta| < 1.$$

From $Re\left\{\frac{K(\zeta)}{F(\zeta)}\right\} = Re\left\{\frac{\zeta G'(\zeta)}{F(\zeta)}\right\} > 0$ and $\frac{\zeta G'(\zeta)}{F(\zeta)} = 1$ at $\zeta = 0$, there exists a bounded regular function $\omega(\zeta)$, with $\omega(0) = 0$ and $|\omega(\zeta)| < 1$ in $|\zeta| < 1$, such that

$$\frac{\zeta G'(\zeta)}{F(\zeta)} = \frac{1+\omega(\zeta)}{1-\omega(\zeta)}.$$

This implies that

 $[\zeta F(\zeta) + \zeta^2 G'(\zeta)]\omega(\zeta) = \zeta^2 G'(\zeta) - \zeta F(\zeta).$

Let $G(\zeta) = \frac{1}{\zeta} + \sum_{k=1}^{\infty} (a_k + b_k) \zeta^k = \frac{1}{\zeta} + \sum_{k=0}^{\infty} c_k \zeta^k$, then we have

$$[-2 + \sum_{k=0}^{\infty} (kc_k + \alpha_k)\zeta^{k+1}]\omega(\zeta) = \sum_{k=0}^{\infty} (kc_k - \alpha_k)\zeta^{k+1},$$

$$[-2 + \sum_{k=0}^{n-1} (kc_k + \alpha_k)\zeta^{k+1}]\omega(\zeta) = \sum_{k=0}^n (kc_k - \alpha_k)\zeta^{k+1} - \sum_{k=n}^\infty (kc_k + \alpha_k)\omega(\zeta)\zeta^{k+1} + \sum_{k=n+1}^\infty (kc_k - \alpha_k)\zeta^{k+1} = \sum_{k=0}^n (kc_k - \alpha_k)\zeta^{k+1} + \sum_{k=n+2}^\infty \beta_k\zeta^k,$$

where $\sum_{k=n+2}^{\infty} \beta_k \zeta^k$ converges in $|\zeta| < 1$. Let $\zeta = re^{i\theta}$ (r < 1). Then integrations give

$$4 + \sum_{k=0}^{n-1} |kc_k + \alpha_k|^2 \ge 4 + \sum_{k=0}^{n-1} |kc_k + \alpha_k|^2 r^{2k+2}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} |-2 + \sum_{k=0}^{n-1} (kc_k + \alpha_k) \zeta^{k+1}|^2 d\theta$$

$$\ge \frac{1}{2\pi} \int_0^{2\pi} |-2 + \sum_{k=0}^{n-1} (kc_k + \alpha_k) \zeta^{k+1}|^2 |\omega(\zeta)|^2 d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} |\sum_{k=0}^n (kc_k - \alpha_k) \zeta^{k+1} + \sum_{k=n+2}^\infty \beta_k \zeta^k|^2 d\theta$$

$$\ge \sum_{k=0}^n |kc_k - \alpha_k|^2 r^{2k+2}.$$

Letting $r \to 1$, we have that

$$4 + \sum_{k=0}^{n-1} |kc_k + \alpha_k|^2 \ge \sum_{k=0}^n |kc_k - \alpha_k|^2,$$

(2.2)
$$|nc_n - \alpha_n|^2 \le 4 + \sum_{k=0}^{n-1} (|kc_k + \alpha_k|^2 - |kc_k - \alpha_k|^2)$$
$$= 4 + 4 \sum_{k=0}^{n-1} k \operatorname{Re}\{c_k \bar{\alpha}_k\}.$$

Since $\alpha_1 = 1$ and $\alpha_n = 0$ for n > 1, we obtain from (2.2) with n = 1 that

$$|c_1 - 1|^2 \le 4, \quad -1 \le c_1 \le 3$$

and, for n > 1,

$$n^2 |c_n|^2 \le 4 + 4c_1 \le 16, \ |c_n| \le \frac{4}{n}.$$

From these, we finally get

$$-1 \le a_1 + b_1 \le 3,$$

$$|a_n + b_n| \le \frac{2\sqrt{1 + a_1 + b_1}}{n} \le \frac{4}{n} \quad \text{for} \quad n > 1.$$

THEOREM 2.6. If $f \in \Sigma$ with real A is an odd function convex in the direction of the real axis and if the coefficients a_n , b_n are all real, then

$$-1 \le b_1 - a_1 \le 3,$$
$$|a_n - b_n| \le \frac{2\sqrt{1 + b_1 - a_1}}{n} \le \frac{4}{n} \quad for \ odd \ n > 1$$

Proof. By Theorem 2.4, h - g is conformal and convex in the direction of the real axis in Δ . Let $G(\zeta) = i\{h(\frac{1}{i\zeta}) - g(\frac{1}{i\zeta})\} = \frac{1}{\zeta} - (a_1 - b_1)\zeta + (a_3 - b_3)\zeta^3 - \cdots = \frac{1}{\zeta} + \sum_{k=0}^{\infty} c_k \zeta^k$ on $0 < |\zeta| < 1$. Then $G(\zeta)$ is regular and convex in the direction of the imaginary axis, in $0 < |\zeta| < 1$, and real on the real axis. By following the same process as the step 2 in the proof of Theorem 2.5, we obtain

$$|a_n - b_n| \le \frac{2\sqrt{1 + b_1 - a_1}}{n} \le \frac{4}{n} \quad \text{for odd } n > 1.$$

755

References

- [1] P. L. Duren, Univalent functions, Springer-Verlag, N. Y. 1983.
- [2] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
- W. Hengartner and G. Schober, Univalent harmonic exterior and ring mappings, J. Math. Anal. Appl. 156 (1991), 154-171.
- [4] S. H. Jun, Planar harmonic mappings and curvature estimates, J. Korean Math. Soc. 32 (1995), 803-814.

*

DEPARTMENT OF MATHEMATICS SEOUL WOMEN'S UNIVERSITY SEOUL 139-774, REPUBLIC OF KOREA

E-mail: shjun@ swu.ac.kr