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PARTIAL FRACTION DECOMPOSITION FROM A
LINEAR-ALGEBRAIC VIEWPOINT

Jeong Keun Lee*, Jun Soo Choa**, Min Shik Cho***,
and Dong Hwan Han****

Abstract. We show that to every real polynomial of degree n,
there corresponds a certain basis for the space of polynomials of
degree less than or equal to (n − 1). As an application, we give a
new proof for the existence and uniqueness of the partial fraction
decomposition of a rational function.

On my website, I happened to see a post asking a clear explanation:
Why should we begin with the identity of the form

x− 1
x2(x + 1)

=
a

x
+

b

x2
+

c

x + 1
( a, b, c real)

when we integrate
∫

x−1
x2(x+1)

dx? Apparently this question seemed easy
to answer but it is not as simple as we expect.

In classroom, we are encountered with the problem of decomposing
a rational function into the partial fractions. For example, this occurs
when we integrate a rational function or solve by Laplace transform an
initial value problem for an ordinary differential equation with constant
coefficients. Most college textbooks [3, 6] emphasize on the actual com-
putation of coefficients in the partial fraction decomposition and it seems
difficult to find an explanation about the basic structure behind it.

The partial fraction decomposition of a rational function has been
dealt with in several papers [1, 2, 5]. The conventional approaches found
in references are essentially based on the Euclid division algorithm. Our
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approach uses an elementary theory of a finite dimensional vector space
to establish the existence and the uniqueness of the partial fraction de-
composition for a rational function. The key steps in our result consist
in constructing a particular set of polynomials from the denominator
of a rational function, which becomes a basis for a certain vector space
of polynomials, and finding a linear combination of the numerator in a
rational function with respect to this basis. This particular basis is com-
pletely determined by the factorization of the denominator of a rational
function.

We begin by mentioning the well-known fact that every polynomial
with real coefficients can be factorized into the product of linear and
quadratic polynomials. It is an immediate consequence of the famous
‘Fundamental theorem of algebra’ which states that every polynomial of
degree greater than or equal to 1 has at least one complex zero.

Theorem 1 (Construction of a basis). Let n denote the degree of a
polynomial q(x) and Pn−1 be the vector space of polynomials of degree
less than or equal to n− 1.

(a) If ai(1 ≤ i ≤ n) are distinct real numbers and q(x) =
n∏

i=1
(x − ai),

then {q(x)/(x− ai)|1 ≤ i ≤ n} is a basis for Pn−1.

(b) If q(x) = (x−a)n for some real number a, then
{

q(x)
(x−a)j |1 ≤ j ≤ n

}
is a basis for Pn−1.

(c) If q(x) =
(
(x− ξ)2 + η2

)m
for real numbers ξ and η 6= 0 and

2m = n, then
{

q(x)

((x−ξ)2+η2)j

}m

j=1
and

{
(x−ξ)q(x)

((x−ξ)2+η2)j

}m

j=1
form a basis

for Pn−1.

(d) If q(x) =
k∏

i=1
(x− ai)ni

∏̀
i=1

(
(x− ξi)2 + η2

i

)mi for distinct real num-

bers a′is and distinct complex numbers ξi + ηi

√
−1(ηi 6= 0) and

k∑
i=1

ni+2
∑̀
i=1

mi = n, then
{

q(x)
(x−ai)j

}k, ni

i=1,j=1
,

{
q(x)

((x−ξi)2+η2
i )

j

}`, mi

i=1,j=1

and

{
(x−ξi)q(x)

((x−ξi)2+η2
i )

j

}`, mi

i=1,j=1

form a basis for Pn−1.

Proof. (a) It suffices to show that

(1)
n∑

i=1

ci
q(x)

x− ai
= 0
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implies ci = 0 for each integer 1 ≤ i ≤ n. Putting x = aj in (1), we can
easily see that cj = 0 for each integer j since aj ’s are distinct and each
polynomial q(x)/(x − ai) vanishes at x = aj for all i 6= j. Thus (a) is
proved.

(b) We prove that

(2)
n∑

j=1

cj
q(x)

(x− a)j
= 0

implies cj = 0 for each integer 1 ≤ j ≤ n. But this is easily seen by
noting that (2) is rewritten as

n∑
j=1

cj(x− a)n−j = 0.

(c) We need to show that
m∑

j=1

[cj + (x− ξ)dj ]
(
(x− ξ)2 + η2

)m−j = 0(3)

implies cj = dj = 0 for each integer 1 ≤ j ≤ m. Substituting x =
ξ + η

√
−1 in (3), we know that

cm +
√
−1ηdm = 0,

from which it follows that cm = dm = 0. Dividing the both side of (3)
with cm = dm = 0 by (x− ξ)2 + η2 and substituting x = ξ + η

√
−1, we

again see that cm−1 = dm−1 = 0. Repeating this process, we see that
cj = dj = 0 for each integer 1 ≤ j ≤ m and (c) is proved.

(d) Suppose that

(4)
k∑

i=1

ni∑
j=1

ai,j
q(x)

(x− ai)j
+
∑̀
i=1

mi∑
j=1

[ci,j + (x− ξi)di,j ]q(x)(
(x− ξi)2 + η2

i

)j = 0.

Applying the argument used in proving (b), we can see that ai,j = 0 for
each integer 1 ≤ j ≤ ni, 1 ≤ i ≤ k. If we apply the argument used in
proving (c) to (4), together with ai,j = 0, we see that ci,j = di,j = 0 for
each integer 1 ≤ j ≤ mi, 1 ≤ i ≤ `. Thus (d) is proved.

We focus on the problem of expressing a rational function as the
partial fraction decomposition.

Let {vi(x)}n
i=1 be a basis for Pn−1 constructed in Theorem 1. The

elementary theory of a finite dimensional vector space tells us that for
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any p(x) ∈ Pn−1, there exists a unique set {ci}n
i=1of real numbers such

that

(5) p(x) = c1v1(x) + c2v2(x) + · · ·+ cnvn(x).

Now we obtain the partial fraction decomposition of a rational function
p(x)/q(x) if we divide the both sides of (5) by q(x).

More precisely, we have the following result.

Theorem 2 (Existence and uniqueness of partial fraction decompo-
sition). Consider a rational function of the form

r(x) :=
p(x)
q(x)

, deg q(x) = n, p(x) ∈ Pn−1.

If q(x) is factorized into the following form

q(x) =
k∏

i=1

(x− ai)ni
∏̀
i=1

(
(x− ξi)2 + η2

i

)mi

for distinct real numbers a′is and distinct complex numbers ξi + ηi

√
−1

(ηi 6= 0), then there exist unique constants ai,j (1 ≤ j ≤ ni, 1 ≤ i ≤ k),
ci,j and di,j (1 ≤ j ≤ mi, 1 ≤ i ≤ `) such that

(6)
p(x)
q(x)

=
k∑

i=1

ni∑
j=1

ai,j

(x− ai)j
+
∑̀
i=1

mi∑
j=1

ci,j + (x− ξi)di,j(
(x− ξi)2 + η2

i

)j .

Proof. By Theorem 1 (d), there exist unique real constants ai,j (1 ≤
j ≤ ni, 1 ≤ i ≤ k), ci,j and di,j (1 ≤ j ≤ mi, 1 ≤ i ≤ `) such that

(7) p(x) =
k∑

i=1

ni∑
j=1

ai,j
q(x)

(x− ai)j
+
∑̀
i=1

mi∑
j=1

[ci,j + (x− ξi)di,j ]q(x)(
(x− ξi)2 + η2

i

)j
since p(x) ∈ Pn−1. Dividing both sides of (7) by q(x), we obtain (6) and
the proof is completed.

If (x − a)m|q(x) but (x − a)m+1 - q(x), then to a factor (x − a)m of
q(x) there corresponds a fractional function of the form

(8)
m∑

j=1

cj

(x− a)j
.

Similarly, if
(
(x− ξ)2 + η2

)m |q(x) but ((x−ξ)2 +η2)m+1 - q(x) (η 6= 0),
then to the factor

(
(x− ξ)2 + η2

)m there corresponds the partial fraction
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of the form

(9)
m∑

j=1

cj + (x− ξ)dj

((x− ξ)2 + η2)j
.

(8) (respectively, (9)) is sometimes called a partial fraction correspond-
ing to a factor (x− a)m (respectively,

(
(x− ξ)2 + η2

)m). Thus we have
decomposed a rational function into the sum of partial fractions corre-
sponding to each factor of the denominator of a rational function.

Finally we proceed to determine the coefficients in the partial fraction
decomposition (6). Although it is not the main topic of this article, we
believe it is worthwhile to include it for the self-containedness of this
discussion.

Theorem 3 (Coefficients in partial fraction decomposition). Let a
polynomial q(x) be the denominator of a rational function r(x).

(a) If (x− a)m|q(x) but (x− a)m+1 - q(x), then the coefficients cj ’s in
the partial fraction (8) are given by

cm = r(x)(x− a)m|x=a ,

cj =

(
r(x)−

m∑
i=j+1

ci

(x−a)i

)
(x− a)j

∣∣∣∣∣
x=a

(j = m− 1,m− 2, · · · , 1).

(b) If
(
(x− ξ)2 + η2

)m |q(x) but ((x − ξ)2 + η2)m+1 - q(x) (η 6= 0),
then the coefficients cj ’s and dj ’s in the partial fraction (9) are
given by

cm + dmη
√
−1 = r(x)[(x− ξ)2 + η2]m

∣∣
x=ξ+η

√
−1

,

cj + djη
√
−1 =

(
r(x)−

m∑
i=j+1

ci+(x−ξ)di

[(x−ξ)2+η2]i

)
[(x− ξ)2 + η2]j

∣∣∣∣∣
x=ξ+η

√
−1

(j = m− 1,m− 2, · · · , 1).

Proof. (a) We write r(x) as the form

(10) r(x) =
m∑

j=1

cj

(x− a)j
+ R(x),

where R(x) is the remainder term not containing x − a in the partial
fraction decomposition (6) of r(x). Multiplying the both sides of (10) by
(x− a)m and putting x = a, we see that

cm = r(x)(x− a)m|x=a .
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Now we rewrite (10) as

(11) r(x)− cm

(x− a)m
=

m−1∑
j=1

cj

(x− a)j
+ R(x).

If we put x = a after multiplying the both sides of the expression (11)
by (x− a)m−1, then we see that

cm−1 =
(

r(x)− cm

(x− a)m

)
(x− a)m−1

∣∣∣∣
x=a

.

Repeating this process completes the proof of (a).
(b) As in (a), we write r(x) as the form

(12) r(x) =
m∑

j=1

cj + (x− ξ)dj

[(x− ξ)2 + η2]j
+ R̃(x),

where R̃(x) is the remainder term not containing (x − ξ)2 + η2 in the
partial fraction decomposition (6) of r(x). Multiplying the both sides of
(12) by [(x− ξ)2 + η2]m and putting x = ξ + η

√
−1, we obtain

cm + dmη
√
−1 = r(x)[(x− ξ)2 + η2]m

∣∣
x=ξ+η

√
−1

,

from which cm and dm follow. Now we rewrite (12) as

(13) r(x)− cm + (x− ξ)dm

[(x− ξ)2 + η2]m
=

m−1∑
j=1

cj + (x− ξ)dj

[(x− ξ)2 + η2]j
+ R̃(x).

If we put x = ξ + η
√
−1 after multiplying the both sides of (13) by

[(x− ξ)2 + η2]m−1, then we obtain

cm−1 + dm−1η
√
−1

=
(

r(x)− cm + (x− ξ)dm

[(x− ξ)2 + η2]m

)
[(x− ξ)2 + η2]m−1

∣∣∣∣
x=ξ+η

√
−1

,

from which we can obtain cm−1 and dm−1. Repeating this process, we
can show that for j = m− 1,m− 2, · · · , 1

cj + djη
√
−1

=

r(x)−
m∑

i=j+1

ci + (x− ξ)di

[(x− ξ)2 + η2]i

 [(x− ξ)2 + η2]j

∣∣∣∣∣∣
x=ξ+η

√
−1

.

Thus (b) is proved.
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Determining the coefficients in the partial fraction decomposition may
require a lot of complicated computations and time but is one of the most
important parts in applications such as integrating a rational function.
See [4, 7] for another algorithms or computational skills.

In the below, we illustrate our results through two explicit examples.

Example 1. Find the partial fraction decomposition of the following
rational function

r1(x) =
2x + 1

x2(x + 1)
.

Solution By Theorem 1, we can see that q(x)/x, q(x)/x2 and q(x)/(x+1)
is a basis for P2, where q(x) = x2(x+1). Thus there are unique constants
c1, c2 and d1 such that

(14) 2x + 1 = c1
q(x)
x

+ c2
q(x)
x2

+ d1
q(x)
x + 1

By dividing the both sides of (14) by q(x), we have the following partial
fraction decomposition for r1(x)

2x + 1
x2(x + 1)

=
c1

x
+

c2

x2
+

d1

x + 1
,

which is the sum of partial fractions corresponding to each factor of
the denominator q(x). The coefficients c1, c2 and d1 are given by the
followings:

c2 = r1(x)x2
∣∣
x=0

=
2x + 1
x + 1

∣∣∣∣
x=0

= 1,

c1 =
(
r1(x)− c2

x2

)∣∣∣
x=0

=
1

x + 1

∣∣∣∣
x=0

= 1,

d1 = r1(x)(x + 1)|x=−1 =
2x + 1

x2

∣∣∣∣
x=−1

= −1.

Example 2. Find the partial fraction decomposition of the following
rational function

r2(x) =
2x− 3

x(x2 + 1)
.

Solution Let q(x) = x(x2+1). Since q(x)/x, q(x)/(x2+1) and xq(x)/(x2+
1) is a basis for P2 by Theorem 1, there are unique constants a1, c1 and
d1 such that

(15) 2x + 1 = a1
q(x)
x

+ c1
q(x)

x2 + 1
+ d1

xq(x)
x2 + 1
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By dividing the both sides of (15) by q(x), we have the following partial
fraction decomposition for r2(x)

2x− 3
x(x2 + 1)

=
a1

x
+

c1

x2 + 1
+

d1x

x2 + 1
.

Applying Theorem 3, we have

a1 = r2(x)x|x=0 =
2x− 3
x2 + 1

∣∣∣∣
x=0

= −3,

c1 + d1

√
−1 = r2(x)(x2 + 1)

∣∣
x=

√
−1

=
2x− 3

x

∣∣∣∣
x=

√
−1

= 2 + 3
√
−1.

Thus a1 = −3, c1 = 2 and d1 = 3.
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