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h-STABILITY FOR PERTURBED VOLTERRA
DIFFERENCE SYSTEMS

Yoon Hoe Goo*, Se Lim Jung**, and Dae Hee Ry***

Abstract. We investigate h−stability of solutions of perturbed
Volterra difference systems.

1. Introduction

The theory of difference equations is rapidly gaining attention because
of its use in such fields as numerical analysis, control theory, finite math-
ematics, and computer science. Furthermore, difference equations occur
in the investigation of discretization methods differential equations [9].
Medina and Pinto [11, 12] introduced the notion of h−stability which is
an important extension of the notion of exponential asymptotic stability.
In the study of the stability properties of difference systems, the notion
of h−stability is very useful because, when we study the asymptotic sta-
bility, it is not easy to work with non-exponential types of stability. For
the study of difference systems, we refer to Choi et al.[2], Medina [10],
Medina and Pinto [11]. Also, Choi et al.[4], Medina and Pinto [12] stud-
ied the h−stability of Volterra difference systems. In [6], they studied
h−stability of a solution of Volterra integro-differential equation

x′ = A(t)x +
∫ t

t0

K(t, s)x(s)ds, x(t0) = x0,

and its perturbation

y′ = A(t)y +
∫ t

t0

K(t, s)y(s)ds + g(t, y, Ty), y(t0) = y0,
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and their relations to each other. In this paper, corresponding to these
Volterra equations, we study h−stability of solutions of difference equa-
tion

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s), x(n0) = x0,

and its perturbation

y(n + 1) = A(n)y(n) +
n∑

s=n0

B(n, s)y(s) + g(n, y(n), T y(n)), y(n0) = y0,

Conditions on A,B, g and T are given later.

2. Preliminaries

We consider the linear Volterra difference system

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s), x(n0) = x0,(2.1)

where A(n) and B(n, s) are m × m matrices for each n, s ∈ N(n0) =
{n0, n0 + 1, ..., n0 + k, ...}, n0 is a nonnegative integer. Let x(n) =
x(n, n0, x0) be the unique solution of (2.1) satisfying the initial con-
dition x(n0) = x0. Let Rm denote the Euclidean m−space. For x ∈ Rm,

let |x| = (
∑m

j=1 x2
j )

1/2. For an m ×m matrix A, define the norm |A| of
A by |A| = sup|x|≤1 |Ax|. Let R+ be the half line [0,∞). We now give
the main definitions [11] that we need in the sequel.

Definition 2.1. System (2.1) is called an h−system around the null,
or more briefly an h−system, if there exist a positive function h :
N(n0) → R and c ≥ 1, such that

|x(n, n0, x0)| ≤ c |x0|h(n)h−1(n0), n ≥ n0,

for |x0| small enough (here, h−1(n) = 1/h(n)).

If h is a bounded function, then an h−system permits the following
type of stability:

Definition 2.2. The zero solution of system (2.1), or more briefly
sysetem (2.1), is said to be h−stable(hS) if there exist c ≥ 1, and δ > 0
exist as well as a positive bounded function h : N(n0) → R such that

|x(n, n0, x0)| ≤ c |x0|h(n)h−1(n0), n ≥ n0 for |x0| ≤ δ.
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For our discussion we need the following lemmas

Lemma 2.3. [3] Let s(n, r) be a nonnegative nondecreasing function
in r for any fixed n ∈ N(n0). Suppose that for any n ≥ n0, nonneg-
ative functions u(n) and v(n) defined on N(n0) satisfy the following
inequality:

v(n)−
n−1∑

l=n0

s(l, v(l), |T | v(l)) < u(n)−
n−1∑

l=n0

s(l, u(l), |T |u(l)).

If v(n0) < u(n0), then v(n) < u(n) for all n ≥ n0.

Consider the linear Volterra difference system

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s), x(n0) = x0,

and its perturbation

y(n + 1) = A(n)y(n) +
n∑

s=n0

B(n, s)y(s) + g(n, y(n)),

y(n0) = y0,

(2.2)

m matricesforeachn,s∈ N(n0), g : N(n0)× Rm × Rm → Rm, N(n0) =
{n0, n0 + 1, ..., n0 + k, ...}, and Rm is the m−dimensional real Euclidean
space.

Lemma 2.4. [3] The unique solution y(n, n0, y0) of (2.2) satisfying
y(n0) = y0 is given by

y(n, n0, y0) = R(n, n0)y0 +
n−1∑
s=n0

R(n, s + 1)g(s, y(s)),

where R(n,m) is the unique solution of the matrix difference equation

R(n,m) = R(n,m + 1)A(n) +
n−1∑
r=m

R(n, r + 1)B(r,m),

n− 1 ≥ m ≥ n0,

(2.3)

with R(m,m) = I.

Theorem 2.5. [10] The Volterra difference system (2.1) is hS if and
only if there exist a constant c ≥ 1 and a positive bounded funtion
h : N(n0) → R such that |R(n, n0)| ≤ ch(n)h(n0)−1, for n ≥ n0, where
R(n, n0) is the resolvent matrix of system (2.3).
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Remark 2.6. We note that the resolvent matrix R(n, m) for equa-
tion (2.3) is closely related to the fundemental matrix Φ(n, n0). By the
uniquence of solution, it is easy to see that R(n, n0) = Φ(n, n0).

To illustrate Remark 2.6, we give the following example.

Example 2.7. [4] We consider the linear Volterra difference equation

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s)

= 2x(n) +
n∑

s=n0

2n−sx(s),

(2.4)

where A(n) = 2 and B(n, s) = 2n−s. Then any solution of (2.4) through
the initial point x(n0, n0, x0) = x0 is given by

x(n, n0, x0) =
x0

3
[1 + 2 · 4n−n0 ], n ∈ N(n0).

Thus the resolvent matrix solution R(n,m) with R(m,m) = 1 of the
difference equation

R(n,m) = R(n,m + 1)A(n) +
n−1∑
r=m

R(n, r + 1)B(r,m)

= R(n,m + 1)2 +
n−1∑
r=m

R(n, r + 1)2r−m,

n− 1 ≥ m ≥ n0,

is given by

R(n,m) =
1
3
[1 + 2 · 4n−m].

In fact, we note that the fundamental matrix of (2.4) is given by

∂

∂x0
x(n, n0, x0) = Φ(n, n0) =

1
3
[1 + 2 · 4n−n0 ]

and

Φ(n, n0) = R(n, n0).

We need the following difference inequality to obtain hS between the
solutions of (2.1) and (3.1).



Volterra difference systems 639

Lemma 2.8. [2] Let a(n), b(n) and c(n) be non-negative functions
defined on N(n0) and d be a positive number. If, for n ≥ n0, the
following inequality hold:

u(n) ≤ d +
n−1∑
s=n0

a(s)u(s) +
n−1∑
s=n0

b(s)
s−1∑

l=n0

c(l)u(l),

then

u(n) ≤ d exp[
n−1∑
s=n0

(a(s) + b(s)
s−1∑

l=n0

c(l))], n ≥ n0.

3. Main results

In this section, we examine the property of hS for the perturbed
difference system of linear difference system (2.1) using the comparison
principle and discrete Bihari-type inequality. We consider the linear
Volterra difference system

x(n + 1) = A(n)x(n) +
n∑

s=n0

B(n, s)x(s), x(n0) = x0,

and its perturbed system

y(n + 1) = A(n)y(n) +
n∑

s=n0

B(n, s)y(s) + g(n, y(n), T y(n)),

y(n0) = y0

(3.1)

where A(n) and B(n, s) are m × m matrices for each n, s ∈ N(n0),
g : N(n0) × Rm × Rm → Rm, and T : F (N(n0),Rm) → Rm is an
operator on

F (N(n0),Rm) = {y | y : N(n0) → Rm is a sequence},
and g(n, 0, 0) = 0.

Theorem 3.1. Assume that
(i) The zero solution x = 0 of (2.1) is hS with the non-increasing

fumction h(n),
(ii) |g(n, y, Ty)| ≤ s(n, |y| , |Ty|), where s : N(n0) × R+ × R+ → R+

is strictly increasing in u,v for each fixed n ∈ N(n0) with s(n, 0, 0) = 0.
Consider the scalar difference equation

u(n + 1) = u(n) + cs(n, u(n), |T |u(n)),

u(n0) = u0 = c |y0| , c > 1.
(3.2)
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If the zero solution u = 0 of (3.2) is hS, then the zero solution y = 0 of
(3.1) is also hS wherever u0 = c |y0| .

Proof. By Lemma 2.4, the solution y(n) of (3.1) is given by

y(n) = R(n, n0)y0 +
n−1∑

j=n0

R(n, j + 1)g(j, y(j), T y(j)),

where R(n,m) is the resolvent solution of the matrix difference equation
(2.3). Let u = u(n, n0, u0) be the solution of (3.2) with the initial value
u(n0) = u0. Then, in view of the assumptions and Theorem 2.5, we have

|y(n)| ≤ |R(n, n0)| |y0|+
n−1∑

j=n0

|R(n, j + 1)| |g(j, y(j), T y(j))|

≤ c |y0|h(n)h−1(n0) + c
n−1∑

j=n0

h(n)h−1(j + 1)s(j, |y(j)| , |Ty(j)|)

≤ c |y0|+ c
n−1∑

j=n0

s(j, |y(j)| , |T | |y(j)|)

since h(n) is non-increasing. Thus we obtain

|y(n)| − c
n−1∑

j=n0

s(j, |y(j)| , |T | |y(j)|) ≤ c |y0| = u0

= u(n)− c
n−1∑

j=n0

s(j, u(j), |T |u(j)).

By Lemma 2.3, we have |y(n)| < u(n) for all n ≥ n0 ≥ 0. Also we have

|y(n)| < u(n) ≤ c1u0h(n)h−1(n0)

= c1c |y0|h(n)h−1(n0)

= d |y0|h(n)h−1(n0), d = c1c > 1

since u = 0 of (3.2) is hS. This completes the proof.
We improve the result in [8], which is the hS property for the equation

(3.1)
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Theorem 3.2. Suppose that the zero solution x = 0 of (2.1) is hS
with the positive function h(n) and for any n ≥ n0

|g(n, y, Ty)| ≤ a(n) |y|+ b(n)
n−1∑

j=n0

c(j) |y(j)|

where a, b, c ∈ F (N(n0),R+) and

M(n) = exp[c1

n−1∑

j=n0

[h(j)h−1(j + 1)a(j) + b(j)h−1(j + 1)
j−1∑

k=n0

h(k)c(k)]]

< ∞.

Then the zero solution y = 0 of (3.1) is hS.

Proof. By Lemma 2.4, the solution y(n, n0, y0) of (3.1) is given by

y(n, n0, y0) = R(n, n0)y0 +
n−1∑

j=n0

R(n, j + 1)g(j, y(j), Ty(j)),

where R(n,m) is the resolvent solution of the matrix difference equation
(2.3). Then, by assumptions, we have

|y(n, n0, y0)| ≤ |R(n, n0)| |y0|+
n−1∑

j=n0

|R(n, j + 1)| |g(j, y(j), T y(j))|

≤ c1h(n)h−1(n0) |y0|+
n−1∑

j=n0

c1h(n)h−1(j + 1) |g(j, y(j), T y(j))|

≤ c1h(n)h−1(n0) |y0|

+ c1

n−1∑

j=n0

h(n)h−1(j + 1)[a(j)|y(j)|+ b(j)
j−1∑

k=n0

c(k) |y(k)|].

Putting u(n) = |y(n)|h−1(n), we obtain the following inequality from
Lemma 2.8

u(n) ≤ c1u(n0) + c1

n−1∑

j=n0

[h(j)h−1(j + 1)a(j)u(j)

+ b(j)h−1(j + 1)
j−1∑

k=n0

h(k)c(k)u(k)]
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≤ c1u(n0) exp[c1

n−1∑

j=n0

[h(j)h−1(j + 1)a(j)

+ b(j)h−1(j + 1)
j−1∑

k=n0

h(k)c(k)]]

≤ c1u(n0)M(n).

Hence we obtain |y(n)| ≤ M |y(n0)|h(n)h−1(n0), where M = c1M(n) ≥
1, for all n ≥ n0, and the proof is complete.
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