A Practical TCP-friendly Rate Control Scheme for SVC Video Transport

SVC 비디오 전송을 위한 실용적인 TCP 친화적 전송률 제어 기법

  • 서광덕 (연세대학교 컴퓨터정보통신공학부)
  • Published : 2009.02.15

Abstract

In this paper, we propose a practical TCP friendly rate control scheme that considers the minimum channel bandwidth of the network when transporting SVC (scalable video coding) video over IP netowrks such as Internet. RTP and RTCP is mainly designed for use with UDP (User Datagram Protocol) for real-time video transport over the Internet. TCP-friendly rate control was proposed to satisfy the demands of multimedia applications while being reasonably fair when competing for bandwidth with conventional TCP applications. However the rate control model of the conventional TCP-friendly rate control scheme does not consider the minimum channel bandwidth of the network. Thus the estimated channel bandwidth by the conventional rate control model might be quite different from the real channel bandwidth when the packet loss ratio of the network is very large. In this paper, we propose a modified TCP-friendly rate control scheme that considers the minimum channel bandwidth of the network. Based on the modified TCP-friendly rate control, we assign the minimum channel bandwidth to the base layer bitstream of SVC video, and remaining available bandwidth is allocated to the enhancement layer of SVC video for the TCP friendly scalable video transmission. It is shown by simulations that the modified TCP-friendly rate control scheme can be effectively used for a wider range of controlled bit rates depending on the packet loss ratio than the conventional TCP-friendly control scheme. Furthermore, the effectiveness of the proposed scheme in terms of objective video quality is proved by comparing PSNR performance with the conventional scheme.

본 논문에서는 인터넷과 같은 IP망에서 SVC(scalable video coding) 비디오를 전송할 때 주어진 최소 전송대역폭 조건에 부합되는 실용적인 TCP 친화적 전송률 제어 기법을 제안한다. UDP 프로토콜을 이용하여 실시간 비디오를 전송할 때 상위 응용계층의 프로토콜로서 실시간 수송 프로토콜(RTP)과 실시간 수송 제어 프로토콜(RTCP)이 일반적으로 사용이 되는데, 이때 발생되는 패킷 스트림의 전송률을 네트워크 내에서의 다른 TCP세션과 공평하게 분배하여 결정할 수 있는 방법이 TCP 친화적 전송률 제어(TCP-friendly rate control) 기법이다. 기존의 TCP 친화적 전송률 제어 기법에서 제안한 전송률 결정 모델에서는 채널의 최소 전송 대역폭에 대한 고려가 반영이 되지 못하여 패킷 손실이 큰 경우에 대해서는 모델에 의해 결정된 전송률이 채널의 실제 최소 전송 대역폭과 매우 상이한 문제점이 발생한다. 본 논문에서는 최소 전송 대역폭을 고려하여 개선된 TCP 친화적 전송률 제어 모델을 고안하고, 이 모델을 기반으로 SVC의 기본계층(base layer)에 대해 최소 전송률을 할당하며 나머지 가용한 전송률을 향상계층(enhancement layer) 스트림에 할당하는 TCP 친화적 스케일러블 비디오 전송 기법을 제안한다. 실제적인 인트라 및 인터넷 망을 통한 SVC 비디오 전송에 의한 필드 테스트를 통해 제안된 기법의 성능을 검증한다.

Keywords

References

  1. S. Floyd, and K. Fall, “Promoting the use of end-to-end congestion control in the Internet,” IEEE/ACM Trans. Networking, Vol.7, No.4, pp. 458-472, Aug. 1999 https://doi.org/10.1109/90.793002
  2. Q. Zhang, W. Zhu, and Y. Zhang. "Resource allocation for multimedia streaming over the Internet," IEEE Trans. on Multimedia, Vol.3, No.3. pp. 339-355, Sep. 2001 https://doi.org/10.1109/6046.944477
  3. S. Floyd, M. Handley, J. Padhye, and J. Widmer, "Equation-based congestion control for unicast applications," ACM SIGCOMM, Aug. 2000 https://doi.org/10.1145/347057.347397
  4. D. Wu, Y. T. Hou, W. Zhu, H. Lee, T. Chiang, Y. Zhang, and H. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., Vol.10, No.6, pp. 923-941, Sept. 2000 https://doi.org/10.1109/76.867930
  5. T. Turletti, and C. Huitema, “Videoconferencing on the Internet,” IEEE/ACM Trans. Networking, Vol.4, pp. 340-351, June 1996 https://doi.org/10.1109/90.502233
  6. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple model and its empirical validation,” ACM SIGCOMM Computer Communication Review, Vol.28, No.4, pp. 303-314, Oct. 1998 https://doi.org/10.1145/285243.285291
  7. J. Widmer, R. Denda. and M. Mauve, “A survey on TCP-friendly congestion control,” IEEE Network, Vol.15, No.3, pp. 28-37, May 2001 https://doi.org/10.1109/65.923938
  8. Q. Zhang, W. Zhu, and Y. Zhang, “Network-adaptive rate control and unequal loss protection with TCP-friendly protocol for scalable video over Internet." Journal of VLSI Signal Processing, Vol.34, No.1-2, pp. 67-81, May 2003 https://doi.org/10.1023/A:1022865704606
  9. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Real-time transport protocol” IETF RFC 3550, July 2003
  10. J. Padhye, V. Firoju, D. Towsley. arid J. Kurose, “Modeling TCP Reno performance: A simple model and its empirical validation,” IEEE/ACM Traiis. on Networking, Vol.8, No.2, pp. 133-145, April, 2000 https://doi.org/10.1109/90.842137
  11. T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz, and M. Wien “Joint draft 10 of SVC amendment,” Joint Video Team. Doc. JVT-W201, San Jose, CA, USA, April 2007
  12. H. Schwarz, D. Marpe, and T. Wiegand, "Oveiew of the scalable video coding extension of the H.264/AVC standard," IEEE Trans. Circuits and Systems for Video Technol., Vol.17, No.9, pp. 1103-1120, Sep. 2007 https://doi.org/10.1109/TCSVT.2007.905532
  13. H. Sun, A. Vetro, and J. Xin, "An overview of scalable video streaming," Wireless Communica-tions and Mobile Computing, Vol.7, No.2, pp. 159-172, Feb. 2007 https://doi.org/10.1002/wcm.v7:2
  14. W. Tan, and A. Zakhor, "Real-time Internet video using error resilient scalable compression and TCP-friendly transport protocol," IEEE Trans. on Multimedia, Vol.1, No.2, pp. 172-186, June 1999 https://doi.org/10.1109/6046.766738
  15. J. Vass, S. Zhuang, and X. Zhuang, "Scalable, error-resilient, and high-performance video com-munications in mobile wireless environments," IEEE Trans. Circuits Syst. Video Technol., Vol.11, No.7, pp. 833-847, July 2001 https://doi.org/10.1109/76.931110