Abstract
This paper explores the possibility of describing objects from the change in the shape according to the change in viewpoint. Specifically, we sample the shapes from various viewpoints of a 3-D model, and apply dimension reduction by locally linear embedding. A low dimensional distribution of points are constructed, and characteristics of the object are described from this distribution. Also, we propose two 3-D retrieval methods by applying the iterative closest point algorithm, and by applying Fourier transform and measuring similarity by modified Housdorff distance, and present experimental results. The proposed method shows that the change of shape according to the change in viewpoint can describe the characteristics of an object.
본 논문은 시점에 따른 형상의 변화를 이용하여 물체의 특성을 나타내는 기법을 제안한다. 구체적으로, 3차원 물체의 여러 시점별 형상을 추출한 후, 이를 지역적 선형 사상을 통해 차원 축소하여 저차원 분포를 생성하고, 이를 이용하여 물체의 특성을 나타낸다. 또한, 생성된 점집합들에 반복적 최근접점 기법 및 푸리에 변환을 적용하여 유사한 모델을 검색하는 기법과 그 결과를 제시한다. 제안하는 기법은 다양한 시점에서의 형상 자체만이 아니라 시점에 따른 형상의 변화도 물체의 특성을 표현한다는 것을 보여주며, 검색 등 물체 특성을 표현하는데 적용될 것으로 기대된다.