DOI QR코드

DOI QR Code

A Fast Iris Feature Extraction Method For Embedded System

Embedded 시스템을 위한 고속의 홍채특징 추출 방법

  • 최창수 (충북대학교 전기전자컴퓨터공학부 컴퓨터공학과) ;
  • 민만기 (충북대학교 전기전자컴퓨터공학부 컴퓨터공학과) ;
  • 전병민 (충북대학교 전기전자컴퓨터공학부 컴퓨터공학과)
  • Published : 2009.01.31

Abstract

Iris recognition is a biometric technology which can identify a person using the iris pattern. Recently, using iris information is used in many fields such as access control and information security. But Perform complex operations to extract features of the iris. because High-end hardware for real-time iris recognition is required. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform noticeably improves recognition performance and it is noted that the processing time of the local gradient histogram transform is much faster than that of the existing method and rotation was also a strong attribute.

홍채인식은 홍채의 무의 패턴 정보를 이용하여 동일인 여부를 판별하는 생체인식 기술이다. 최근 들어 홍채 정보를 이용하여 출입통제, 정보보안등의 분야에 많이 활용되고 있다. 하지만 홍채 특징 추출 시 복잡한 연산을 수행한다. 이로 인하여 실시간 홍채인식을 위해서는 고사양의 하드웨어가 수반된다. 본 논문에서는 저사양의 임베디드 환경에 적합한 국부적 그래디언트 히스토그램을 이용한 홍채 특징 추출 방법을 사용하여 임베디드 시스템을 구현하였다. 실험에서 기존의 홍채 특징 추출 방식과 비교하여 특징 추출 속도는 더 빠르면서 대등한 성능을 보여주는 것을 확인 할 수 있으며, 회전에도 강인한 특성을 보였다.

Keywords

References

  1. J.G. Daugman, ""High Confidence Visual Recognition of Persons by a Test of Statistical Independence", IEEE Trans. Pattern Analysis and Machine Intelligence, vol.15, no.11 ,pp.1148-1161, Nov. 1993. https://doi.org/10.1109/34.244676
  2. R.P. Wildes, "Iris Recognition: An Emerging Biometric Technology", Proceedings of the IEEE, vol.85, pp.1348-1363, Sept. 1997. https://doi.org/10.1109/5.628669
  3. W.W. Boles, and B. Boashah, ""A Human Identification Technique Using Images of the Iris and Wavelet Transform"", IEEE Trans. on Signal Processing, vol.46, pp.1185-1188, April 1998. https://doi.org/10.1109/78.668573
  4. William T. Freeman, Michal Roth, "Orientation Histograms for Hand Gesture Recognition," In International Workshop on. Automatic Face and Gesture Recognition, 1995.
  5. D. Lowe, "Distinctive image features from scale invariant key points," In International Journal of Computer Vision. vol 60, pp91-100, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  6. K. Mikolajczyk and C. Schmid. "Indexing based on scale invariant interest points," In Proceedings of International Conference on Computer Vision, pages 525-531, July 2001.
  7. Zhenan Sun, Yunhong Wang, Tieniu Tan, Jiali Cui, "Robust direction estimation of gradient vector field for iris recognition," 17th ICPR, 2004.
  8. William T. Freeman, Michal Roth, "Orientation Histograms for Hand Gesture Recognition," In International Workshop on. Automatic Face and Gesture Recognition, 1995.
  9. J. Daugman and G.O. Williams, "A proposed standard for biometric decidability," In Card TechSecureTech. pp. 223-224, Atlanta, GA, 1996.
  10. Y. Wang and J. Han, "Iris Recognition Using Independent Component Analysis," Int. Conf. Machine Learning and Cybernetics, 2005, pp. 18-21.
  11. http://www.sinobiometrics.com