DOI QR코드

DOI QR Code

R744용 초임계 냉동사이클의 성능 분석

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System

  • 노건상 (동명대학교 냉동공조공학과) ;
  • 손창효 (부경대학교 기계공학부)
  • 발행 : 2009.01.31

초록

R744용 초임계 증기압축식 냉동시스템의 작동변수에 대한 기초설계자료를 제공하고자 냉동능력, 압축일량, 성적계수에 대한 사이클 성능분석을 실시하였다. 본 연구에서 고려된 작동변수는 R744 증기압축식 사이클의 과열도, 가스냉각기 출구온도, 증발온도이다. R744의 냉동능력은 과열도가 증가할수록 증가하는 반면, 증발온도와 가스냉각기 출구온도가 증가할수록 감소한다. 압축일량은 R744의 과열도와 냉각압력과 함께 증가하나 증발온도는 증가할수록 감소한다. 그리고 성적계수는 가스냉각기의 출구온도와 증발온도가 증가할수록 증가하는 반면, 과열도는 감소한다. 그러므로, R744용 초임계 증기압축식 냉동시스템의 냉동능력, 압축일량, 성적계수는 과열도, 가스냉각기 출구온도, 증발온도에 영향을 받는 것을 알 수 있었다. 따라서, R744용 초임계 증기압축식 냉동시스템을 설계할 경우에는 이러한 영향을 면밀하게 파악하여야 한다.

In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

키워드

참고문헌

  1. Bodinus, W. S.. The rise and fall of carbon dioxide systems. In: Will HM, editor. The first century of air conditioning. Atlanta, GA: ASHRAE, pp. 29-34, 1999.
  2. Donaldson, B. and Nagengast, B. Heat and cold: mastering the great indoors. Atlanta, GA: ASHRAE; 1994.
  3. Ebner, T. and Halozan, H., Testing the Aviable Alternative - An Examination of R-134a, R-152a and R-290, lEA HPC Newsletter, Vol. 12, No1, Sittard, The Netherlands, 1994.
  4. Liao, S. and Jakobsen, A., Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump system", IIF-IIR-Sections B and E-Oslo, Norway-1998. pp. 301-310, 1998..
  5. Neksa, P., Rekstad, H., Zakeri, G. R. and Schiefloe, P. A., $CO_2$ heat pump water heater: characteristics, system design and experimental results, International Journal of refrigeration, Vol. 21, No. 3, pp.172-179, 1998. https://doi.org/10.1016/S0140-7007(98)00017-6
  6. Hwang, Y. and Reinhard, R., Experimental Investigation of the $CO_2$ Refrigeration cycle, ASHRAE Transacitions: simpogia, pp. 1219-1227, 1999.
  7. Brown, S. J., Yana-Motta, F. S. and Domanski, A. P., Comparative analysis of an auto motive air conditioning systems operating with $CO_2$ and R134a, International Journal of refrigeration, 25(2002), pp. 19-32, 2002. https://doi.org/10.1016/S0140-7007(01)00011-1
  8. McEnaney, R. P., Boewe, D. E., Yin, J. M., Park, Y. C., Bullard, C. W. and Hrnjak, P. S., Experimental comparison of mobile AlC system when operated with transcritical $CO_2$ versus conventional RI34A, Proceeding of the 7th International Refrigeration Conference at Purdue University, West Lafayette, Indiana 1998, pp. 140-150, 1998.
  9. EES: Engineering Equation Solver, 2006. fChart Software Inc.