SOME CONSTRUCTIONS OF IMPLICATIVE/COMMUTATIVE d-ALGEBRAS

SUN SHIN AHN AND YOUNG HEE KIM

ABSTRACT. In this paper, we give some constructions of implicative/commutative d-algebras which are not BCK-algebras. This demonstrate that the notion of implicative/commutative d-algebras are indeed generalizations of the same in BCK-algebras.

1. Preliminaries

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras ([5, 6]). BCK-algebras have some connections with other areas: D. Mundici [10] proved that MV-algebras are categorically equivalent to bounded commutative BCK-algebras, and J. Meng [8] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. Z. Riečanová [14] showed that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras. G. Georgescu and A. Iorgulescu [2] introduced the notion of pseudo-BCK algebras as an extension of BCK-algebras. X. H. Zhang and W. H. Li [15] established the connections between BCC-algebras, pseudo-BCK algebras, pseudo-BL algebras and weak pseudo-BL algebras (pseudo-MTL algebras). J. Neggers and H. S. Kim introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and then investigated several relations between d-algebras and BCK-algebras as well as several other relations between d-algebras and oriented digraphs [12]. After that some further aspects were studied ([7, 11, 13). J. S. Han et al. [3] defined a variety of special d-algebras, such as strong d-algebras, (weakly) selective d-algebras and others. The main assertion is that the squared algebra $(X; \square, 0)$ of a d-algebra is a d-algebra if and only if the root (X; *, 0) of the squared algebra $(X; \square, 0)$ is a strong d-algebra.

In this paper, we give some constructions of implicative/commutative dalgebras which are not BCK-algebras. This demonstrates that the notion of

Received May 9, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. d/BCK-algebra, (positive-)implicative, commutative, $\sqrt{3}$ -exponential, φ -function d-algebra.

implicative/commutative d-algebras are indeed generalizations of the same in BCK-algebras.

2. Introduction

An (ordinary) d-algebra ([12, 13]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (A) x * x = 0,
- (B) 0 * x = 0,
- (C) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

- (D) (x*y)*(x*z))*(z*y) = 0,
- (E) (x * (x * y)) * y = 0 for all $x, y, z \in X$.

Example 2.1 ([3]). Consider the real numbers \mathbb{R} , and suppose that $(\mathbb{R}; *, e)$ has the multiplication

$$x * y = (x - y)(x - e) + e.$$

Then x*x = e; e*x = e; x*y = y*x = e yields (x-y)(x-e) = 0, (y-x)(y-e) = e and x = y or x = e = y, i.e., x = y, i.e., $(\mathbb{R}; *, e)$ is a d-algebra.

Theorem 2.2 ([4, p. 162]). Let X be a set with $0 \in X$. If we define a binary operation * on X by

$$x * y := \begin{cases} 0 & \text{if } x = y, \\ x & \text{if } x \neq y, \end{cases}$$

then (X, *, 0) is an implicative BCK-algebra

3. Commutative d-algebra

Definition 3.1. A field $(X, +, \cdot)$ is called $\sqrt{3}$ -exponential if there is a function $\varphi: X \to X$ such that

- (E1) $\varphi(\varphi(x)) = x^3$,
- (E2) $\varphi(xy) = \varphi(x)\varphi(y)$,
- (E3) if $x \neq 0$, then $\varphi(x) \neq 0$,
- (E4) $\varphi(0) = 0$

for any $x, y \in X$.

Example 3.2. Let $X := \mathbf{R}$ be the set of all real numbers. If we define a map $\varphi : X \to X$ by

$$\varphi(x) :=
\begin{cases}
 x^{\sqrt{3}} & \text{if } x > 0, \\
 0 & \text{if } x = 0, \\
 -y^{\sqrt{3}} & \text{if } x = -y < 0,
\end{cases}$$

then $(\mathbf{R}, +, \cdot)$ is $\sqrt{3}$ -exponential.

Proposition 3.3. Let $(X, +, \cdot)$ be a $\sqrt{3}$ -exponential field. If we define a new binary operation \star on X by $x \star y := x^2 \varphi(y) y$ for any $x, y \in X$, then $x \star (x \star y) = y \star (y \star x)$ for any $x, y \in X$.

Proof. Given $x, y \in X$, we have

$$x \star (x \star y) = x^2 \varphi(x \star y)(x \star y)$$
$$= x^2 \varphi(x^2 \varphi(y)y)(x^2 \varphi(y)y)$$
$$= x^4 y^4 \varphi(x)^2 \varphi(y)^2.$$

Similarly, we obtain $y \star (y \star x) = y^4 x^4 \varphi(y)^2 \varphi(x)^2$, proving the proposition. \square

Using the notion of $\sqrt{3}$ -exponential field, we construct a commutative d-algebra which is not a BCK-algebra.

Theorem 3.4. Let $(X, +, \cdot)$ be a $\sqrt{3}$ -exponential field and let $x \star y := x^2 \varphi(y) y$ for any $x, y \in X$. If we define a binary operation "*" on X by

$$x * y := \begin{cases} 0 & \text{if } x = 0 \text{ or } x = y, \\ x & \text{if } y = 0, \\ x \star y & \text{otherwise,} \end{cases}$$

then (X, *, 0) is a commutative d-algebra.

Proof. Let x*y=y*x=0. If x=0 or y=0, then it is easy to see that x=y. If we assume that $xy\neq 0$ and $x\neq y$, then $x^2\varphi(y)y=y^2\varphi(x)x=0$, which leads to $\varphi(x)=\varphi(y)=0$. By (E3) we obtain x=y, a contradiction. Hence (X,*,0) is a d-algebra.

We claim that (X,*) is commutative. If $xy \neq 0$ and $x \neq y$, then x*(x*y) = x*(x*y) = y*(y*x) = y*(y*x) by Proposition 3.3. The other cases are trivial. This proves the theorem.

Note that the commutative d-algebra (X, *, 0) described in Theorem 3.4 need not be a BCK-algebra, as in Example 3.2, where $(2 * (2 * 1)) * 1 = 2^8 (2^{\sqrt{3}})^4 = 2^{8+4\sqrt{3}} \neq 0$. Moreover, it is not implicative, since $x * (y * x) = x^{6+2\sqrt{3}}y^{2\sqrt{3}} \neq x$.

We give another method for finding commutative d-algebras which are not BCK-algebras.

4. (Positive-)Implicative d-algebras

Proposition 4.1. Let X be a field and let $x, y \in X$. If we define

$$(1) x * y := x(x - y)\varphi(x, y)$$

where $\varphi: X \times X \to X$ is a function with $\varphi(x,y) \neq 0$ for any $x,y \in X$. Then (X,*,0) is a d-algebra.

Proof. If we assume that x*y=y*x=0, then $x(x-y)\varphi(x,y)=0$ and $y(y-x)\varphi(y,x)=0$ and hence x(x-y)=0=y(y-x). This leads to x=y, since $x-y\neq 0$ implies x=0,y=0, i.e., x=y, a contradiction. Hence (X,*,0) is a d-algebra.

The d-algebra (X, *, 0) described in Proposition 4.1 is called a φ -function d-algebra.

A d/BCK-algebra (X, *, 0) is said to be *implicative* ([2, 10]) if x = x * (y * x) for any $x, y \in X$.

Proposition 4.2. If (X, *, 0) is an implicative d-algebra, then x * 0 = x for any $x \in X$.

Proof. If X is implicative, then x = x*(y*x) for any $x, y \in X$. If we let y := x, then x = x*(x*x) = x*0, proving the proposition.

Proposition 4.3. Let (X, *, 0) be a φ -function d-algebra. Then (X, *, 0) is implicative if and only if φ satisfies the condition:

$$arphi(x,y*x) := \left\{ egin{array}{ll} rac{1}{x-y*x} & \emph{if } x
eq 0, \ a & \emph{otherwise,} \end{array}
ight.$$

where a is an arbitrary element of X.

Proof. Straightforward.

Note that if $x \neq 0$, then $x \neq y * x$ in Proposition 4.3. A d/BCK-algebra (X, *, 0) is said to be *positive implicative* ([2, 10]) if (x * y) * z = (x * z) * (y * z) for any $x, y, z \in X$.

Proposition 4.4. There are no positive implicative φ -function d-algebras which are not BCK-algebras.

Proof. Assume that the implicative φ -function d-algebra (X,*,0) which is not a BCK-algebra is positive implicative. Then (x*y)*z=(x*z)*(y*z) for any $x,y,z\in X$. If we let z:=x, then (x*y)*x=(x*x)*(y*x)=0*(y*x)=0, i.e., (x*y)*x=0. Since (X,*,0) is a φ -function d-algebra, we have $0=(x*y)[(x*y)-x]\varphi(x*y,x)$. Since $\varphi(x,y)\neq 0, \forall x,y\in X$, we obtain 0=(x*y)[x*y-x]. Therefore, either x*y=0 or x*y=x, i.e., $x*y\in\{0,x\}, \forall x,y\in X$. Assume that there are $x,y\in X$ such that $x\neq 0, x\neq y$ and x*y=0. Then $0=x*y=x(x-y)\varphi(x,y)\neq 0$, a contradiction. Hence we have x*y=0 if x=y and x*y=x if $x\neq y$, i.e., (X,*,0) is an implicative BCK-algebra by Theorem 2.2, a contradiction.

Theorem 4.5 ([9]). A BCK-algebra X is positive implicative if and only if (x * y) * y = x * y for any $x, y \in X$.

Theorem 4.6. If the φ -function d-algebra (X, *, 0) is implicative, then (x * y) * y = x * y for any $x, y \in X$.

Proof. Let the φ -function d-algebra (X,*,0) be implicative. Then we have $x=x(x-y*x)\varphi(x,y*x)$ for any $x,y\in X$. Assume that $x\neq 0$, since x=0 implies (0*y)*z=0=(0*z)*(y*z). Then we have $1=(x-y*x)\varphi(x,y*x)$. Hence, $\varphi(x,y*x)=\frac{1}{(x-y*x)}$. Also, $y*x\neq 0$ and $y*x\neq x*(y*x)$. Then $\varphi(y*x,x)=\varphi(y*x,x*(y*x))=\frac{1}{y*x-x*(y*x)}=\frac{1}{y*x-x}=-\frac{1}{x-y*x}=-\varphi(x,y*x)$, i.e., we obtain

(2)
$$\varphi(y * x, x) = -\varphi(x, y * x).$$

Given $x, y \in X$, we have

$$(y*x)*x = (y*x)(y*x-x)\varphi(y*x,x) = (y*x)(y*x-x)[-\varphi(x,y*x)] = (y*x)(x-y*x)\varphi(x,y*x).$$
 by (2)

Since $x = x * (y * x) = x(x - y * x)\varphi(x, y * x)$, we have

$$x - (y * x) * x = (y * x - x)^{2} \varphi(x, y * x)$$

$$= (y * x - x)^{2} \frac{1}{x - y * x}$$

$$= x - y * x,$$

proving the theorem.

Note that in BCK-algebras, the condition (x * y) * (x * z) = (x * y) * x is equivalent to the condition (x*y)*y = x*y, but it is not equivalent in d-algebras in general. This can be demonstrated by Theorem 4.6 and Example 4.8.

Example 4.7. If we define a map $\varphi: X \to X$ by

$$\varphi(x,y) := \begin{cases} \frac{1}{x-y} & \text{if } x(x-y) \neq 0, \\ a & \text{if } x = y, \\ b & \text{if } x = 0, \end{cases}$$

then the function φ satisfies the conditions of Proposition 3.2, and so it defines a φ -function d-algebra (X, *, 0) where

$$x * y := \left\{ \begin{array}{ll} x & \text{if } x \neq y, \\ 0 & \text{if } x = y, \end{array} \right.$$

which is an implicative BCK-algebra as described in Theorem 2.2.

We need to find an implicative d-algebra which is not a BCK-algebra. Consider the following example.

Example 4.8. If we define a map φ on X by

$$\varphi(x,y) := \left\{ \begin{array}{ll} \frac{-y}{x(y-x)} & \text{if } y(y-x) \neq 0, \\ a & \text{otherwise} \end{array} \right.$$

for an arbitrary element a in X, then

$$x*y := \left\{ \begin{array}{ll} -y & \text{if } y(y-x) \neq 0, \\ 0 & \text{if } x = 0 \text{ or } x = y, \\ x & \text{if } y = 0 \end{array} \right.$$

leads to a *d*-algebra. If $y(y-x) \neq 0$, then x*(y*x) = x*(-x) = x for any $x, y \in X$, showing that (X, *, 0) is an implicative *d*-algebra. Indeed, it is not a BCK-algebra, since $((3*4)*(3*5))*(5*4) = 4 \neq 0$.

Example 4.9. If we apply Example 4.8 to the finite field \mathbb{Z}_5 , then we obtain the following table:

Then it is an implicative d-algebra, which is not a BCK-algebra, since $((3*4)*(3*2))*(2*4)=4\neq 0$. Moreover, it is not positive implicative, since (3*4)*5=-4*5=-5 and (3*5)*(4*5)=-5*-5=5.

Remark. In BCK-algebras, X is an implicative BCK-algebra if and only if it is both a positive implicative and a commutative BCK-algebra. But this does not hold in d-algebras. See Example 4.9.

References

- P. J. Allen, H. S. Kim, and J. Neggers, Companion d-algebras, Math. Slovaca 57 (2007), no. 2, 93-106.
- [2] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (Constanta, 2001), 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
- [3] J. S. Han, H. S. Kim, and J. Neggers, Strong and ordinary d-algebras, J. Mutiple-Valued Logic and Soft Computing, (to appear)
- [4] Y. Huang, BCI-algebras, Science Press, Beijing, 2003.
- [5] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
- [7] Y. C. Lee and H. S. Kim, On d*-subalgebras of d-transitive d*-algebras, Math. Slovaca 49 (1999), no. 1, 27–33.
- [8] J. Meng, Implicative commutative semigroups are equivalent to a class of BCK algebras, Semigroup Forum 50 (1995), no. 1, 89–96.
- [9] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Korea, 1994.
- [10] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), no. 6, 889–894.
- [11] J. Neggers, A. Dvurećenskij, and H. S. Kim, On d-fuzzy functions in d-algebras, Invited papers dedicated to Maria Luisa Dalla Chiara, Part II. Found. Phys. 30 (2000), no. 10, 1807–1816.
- [12] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26.

- [13] J. Neggers, Y. B. Jun, and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), no. 3, 243-251.
- [14] Z. Riečanová, On embeddings of generalized effect algebras into complete effect algebras, Soft Computing 10 (2006), 476–482.
- [15] X. H. Zhang and W. H. Li, On pseudo-BL algebras and BCC-algebras, Soft Computing 10 (2006), 941–952.

SUN SHIN AHN
DEPARTMENT OF MATHEMATICS EDUCATION
DONGGUK UNIVERSITY
SEOUL 100-715, KOREA
E-mail address: sunshine@dongguk.edu

YOUNG HEE KIM
DEPARTMENT OF MATHEMATICS
CHUNGBUK NATIONAL UNIVERSITY
CHONGJU 361-763, KOREA
E-mail address: yhkim@chungbuk.ac.kr