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THE STABILITY OF THE SINE AND COSINE FUNCTIONAL
EQUATIONS IN SCHWARTZ DISTRIBUTIONS

JEONGWOOK CHANG AND JAEYOUNG CHUNG

ABSTRACT. We prove the Hyers-Ulam stability of the sine and cosine
functional equations in the spaces of generalized functions such as Schwar-

tz distributions, Fourier hyperfunctions, and Gelfand generalized func-
tions.

1. Introduction

Let f,g : R* — C and denote by Tj(f,g), j = 1,2, the sine and cosine
differences, respectively,

(1.1) T (f,9) = f(z+y) — f(2)g(y) — 9(z) f(y),
(1.2) Ta(f, 9) := glz +y) — g(x)g(y) + f(x) f(y)-

In [17] L. Székelyhidi proved the Hyers-Ulam stability for the sine and co-
sine functional equations. As a special case of his result it is obtained that
if T;(f,9),j = 1,2, is a bounded function on R?", then either there exist
A, p € C, not both zero, such that Af — g is a bounded function on R™, or else
T;(f,9) =0, 7 = 1,2, respectively. In this paper we consider the Hyers-Ulam
stability problems of the sine and cosine functional equations in the spaces
of generalized functions such as the Schwartz tempered distributions S’'(R™},

Fourier hyperfunctions F'(R") and Gelfand generalized functions S’ 1@ (R™).

Following the formulation as in [3, 5, 6, 7] we generalize the differences (1.1)
and (1.2) to the spaces of generalized functions u,v as:

(1.3) Ti(u,v):=ucA—u®v—vQu,
(1.4) To(u,v) :=vod-vQu+tuu,
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where A(z,y) = z+y, z,y € R” and o denotes the pullback, ® denotes the ten-
sor product of generalized functions [9]. For some related Hyers-Ulam stability
problems we refer the reader to [10, 12, 13, 14, 15, 17, 18, 19, 20].

We denote by L>°(R™) the space of all bounded measurable functions on R™.
As results we prove the followings.

Theorem 1.1. Let u,v € S'}g satisfy T1(u,v) € L®(R?*"). Then u and v
satisfy one of the followings:

(1) w=0, v: arbitrary,

(ii) v and v are bounded measurable functions,

(iii) u = ¢ € + B(x), v = €7,

()8 e 2. e )

(V) u=Ae® —e ),’U=§(€ + %),

(Vi) u=b-ze“*, v=1e°?,
where a € R", b, c € C", A € C, and B is a bounded measurable function.

Theorem 1.2. Let u,v € S’}ﬁ satisfy Ta(u,v) € L®°(R?*™). Then u and v
satisfy one of the followings:
(i) v and v are bounded measurable functions,
ii) v = e“* and u is a bounded measurable function,
iii) v =c-z€"*® + B(z), u=£[(1 - c-z)e!*® — B(z)),

. _ e““+AB(x) _ 2Ae®*4+B(z
V) v= "5 u= 1—,\2( 4,

viv=(1-b-2)e“%, u==+b-ze",
(vi) v = e>®[cos(c - ) + Asin(c- z)], u = VA2 + 1ebZsin(c- z),
where a € R™, b, c€ C", A € C, and B is a bounded measurable function.

(
(
(
(

2. Generalized functions

For the spaces of tempered distributions &'(R™) we refer the reader to
[8, 9, 16]. Here we briefly introduce the spaces of Gelfand generalized func-
tions and Fourier hyperfunctions. Here we use the following notations: |z| =
Vei+ 422, lof=a1+ 4 aop, a =og!op!, 2% = 2822 and
0% =07 --- 0% for z = (z1,...,%,) € R®, & = (01,...,0n) € NI, where Ny
is the set of non-negative integers and §; = %.

Definition 2.1. For given 7, s > 0 we denote by S¢ or S¢(R"™) the space of
all infinitely differentiable functions ¢(z) on R™ such that there exist positive
constants A and B satisfying

o |08 ()|
(2.1) lellne = ieR"S;I;I,,ﬂeNg m
The topology on the space S? is defined by the seminorms || - || % in the left-
hand side of (2.1) and the elements of the dual space S’; of SZ are called
Gelfand-Shilov generalized functions. In particular, we denote S’ i by F' and
call its elements Fourier hyperfunctions.
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It is known that if » > 0 and 0 < s < 1, the space S7(R™) consists of all
infinitely differentiable functions ¢(z) on R™ that can be continued to an entire
function on C™" satisfying

(2.2) lo(x + iy)| < Cexp(—alz|'/" +bly|/ =)
for some a, b > 0.

It is well known that the following topological inclusions hold:

1/2

811//5 SFoS, S F oS

We refer the reader to [9], chapter V-VI, for tensor products and pullbacks
of generalized functions.

3. Proofs

For the proof of the theorems we employ the following n-dimensional heat
kernel

E,(z) = (4mt) ™2 exp(—|z|?/4t), t>0.
In view of (2.2) it is easy to see that for each ¢ > 0, E; belongs to the Gelfand-

Shilov space Sllg (R™). Thus the convolution (u * E;)(z) := (uy, Ei(z — y)) is

well defined for all u € S'ig. It is well known that U(z,t) = (u* E¢)(x) is a
smooth solution of the heat equation (8/0;,—A)U = 0in {(z,t) : z € R*, ¢ > 0}
and (u * E;)(z) — u as t — 07 in the sense of generalized functions, that is,
for every ¢ € Sllg (R™),

(u ) = lim [ (ux Ey)(z)p(z) dz.

We call (u * E;)(z) the Gauss transform of u. Let (G, +) be a semigroup, and
C be the field of complex numbers. A function | : G — C is said to be additive
provided I(z+y) = l(z)+I(y) and m : G — C is said to be exponential provided
m(z +y) = m(z)m(y).

We first discuss the solutions of the trigonometric functional equations (1.3)
and (1.4) in the space S 1;; of Gelfand generalized functions. As a consequence
of the result [3] we have the following.

Lemma 3.1. The solutions u, v € S’ig of the equation T;(u,v) =0, j=1,2
are equal, respectively, to the smooth solution f, g of corresponding classical
Junctional equations T;(f,g) =0, j =1,2.

Remark. We refer the reader to Aczél ([1], p. 180) and Aczél-Dombres ([2], pp-
209-217) for the general solutions and measurable solutions of the equations

For the proof of Theorem 1.1 we need the following lemmas.
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Lemma 3.2 ([11]). Let G be a semigroup and C be the field of complex num-
bers. If f,g : G — C satisfy the inequality; for each y € G there exists a positive
constant M, such that

(3.1) |f(z +y) — f(x)g(y)| < My.

Then either f is bounded function or g is an exponential function.

Proof. Suppose that g is not exponential. Then there are y, z € G such that
9(y + z) # g(y)9(2). Now we have

flz+y+2) - flz+y)g(2)
= (flz+y+2) - f@)g(y +2)) — 9(2)(f(z +y) — F(x)g(y))
+ f(x)(g(y + 2) — 9(v)g(2)),

and hence
(3.2)

@) = (34+2) — 9wg() " ((fa+y+2) - fl+1)9(=)

~ (fo+y+2) - f@ely +2) +9() (Fz +1) - F@9®)) )-

In view of (3.1) the right hand side of (3.2) is bounded as a function of .
Consequently, f is bounded. O

Lemma 3.3. Let U,V : R" x (0,00) — C satisfy the inequality, there exists a
positive constant M such that :

(3.3) |U(z +y,t+s) — Uz, t)V(y,s) — V(z,t)U(y,s)| < M

for all z,y € R™,t,s > 0. Then either there exist p. v € C, not both zero, and
L > 0 such that

(3'4) !pU(x7t) - VV(yv 5)| < L,
or else
(3.5) Ulx+y,t+3)-Ul(z,t)V(y,s) - V(z,t)U(y,s) =0

forallz, y e R", t,s> 0.
Also the inequality (3.4) together with (3.3) implies one of the followings:
(i) U =0, V; arbitrary,
(if) U and V are bounded functions,
(iil) V is a bounded exponential function and U is an unbounded function,
(iv) U(z,t) = A(m(z,t) — B(,t)), V = 3(m(x,t) + B(z,t)), where A € C
and B is a bounded function, m is an exponential function.

Proof. First we prove that the equation (3.5) is satisfied if the inequality (3.4)
fails. Assume that the inequality (3.4) holds only when p = v =0 and let

(3.6) F(z,y,t,s) =U(x +y,t+s) - Uz, t)V(y,s) — V(z,t)U(y, s).
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Choose y; and s; satisfying U(yy,s1) # 0. Then we have the equalities

(3.1 V(z,t) = XU(z,t) + MU(z + y1,t + s1) — M F(z,y1,t, 51),
where Ag = ‘ggﬁii) and A; = U(y ~.y- From (3.6) and (3.7) we have

(38) U(lx+y)+z(t+s)+r))
=Ulx+y,t+s)V(iz,r)+V(e+yt+s)U(z,7)+ Flz +y,2,t+s,7)
=U(z+y,t+s)V{z,7)

+ (AOU(I—i-y,t—i-s)+)\1U(:r+y+y1,t+s+51)
- >\1F(-T + Zld/ht + S, 51)) U(zaT)
+ Flz+y,z,t+s,7)
= (V@ OV, 9) + V(@)U (y,5) + Fla,y,t,5) )V (1)
+ 20 (U V (3,5) + V(2,00 (1, 5) + F(,9,t,5) ) U(z,7)
+ A (U@, )V (y +y1,5+ 1) + V(@ Uy + 91,5+ 51)
+F(l’,y+y1,t,8+81) _F(m+y,y17t+3751))U(277")
+ Flz+y,z,t+s,1),
and also we have
Uz + (y+2),t+ (s +7))
=U(x,t)V(y+z,s+7r)+V(z,t)U(y+ 2,5+ 1)+ F(z,y + z,t,s + 7).

Thus we have
(3.10)

U(x’t) (V(y? S)V(Z7 T) + )‘OV(:% S)U(Zv r) + )\1V(y +y1,8+ Sl)U(z7T)

(3.9)

- V(y+zs+ r)) + Vi(z,t) (U(y, $)V(z,r) + MU(y, s)U(z,7)

+MUy+y1,s+s)U(z,7) — U(y+z,s+r))
=F(z,y+2zts+r)-F@+yzt+sr) - Flzyts)V(zr)

= Mo F(z,y,t,8)U(z,1)

- Al(F(x,y +y1,t,s+s1) — F(z +y,y1,t+ s,sl))U(z,r)-

If we fix y, 2, s, 7, the right hand side of (3.10) is bounded. Thus by the
assumption, we have

(3.11)
F(x7y+zvt73+r)_F(z+y72,t+3,7")
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= (/\OF(:I:, Y, t,8) + MF(m,y +y1,t,5+81) — M F(z +y,y1,t + 5, sl))U(z, T)
+ F(z,y,t,8)V(z,7).

Since the left hand side of (3.11) is bounded, our assumption implies F = 0.
Now we assume that the inequality (3.4) holds. Obviously, we have the case
(i) as one of the possible cases. If U is a nontrivial bounded function, it follows
from (3.3) that V is bounded, which gives (ii). If U is unbounded and V is
bounded, then in view of (3.3), U(z + y,t + s) — U(z,t)V (y,s) is bounded
function of (z,t) for each (y,s). By Lemma 3.2, V is an exponential function,
which gives the case (iii). Finally, we consider the case that both U and V are
unbounded functions. For this case, the inequality (3.4) implies

(3.12) V{z,t) = uU(z,t) + B(z,t)

for some p € C, p # 0 and a bounded function B. Putting (3.12) in (3.3) and
using the triangle inequality we have

(3.13) U(z+y,t+s) — Ulw,t) (Bly, ) + 2uU(y, 5)) | < |U(y,5)Bx,t)| + M
for all z, y € R™, t,s > 0. Thus, the left hand side of (3.13) is bounded for
each y € R” and s > 0. Applying Lemma 3.2, we have

(3.14) B(y,s) +2uU(y, s) = m(y, s)

for all y € R", s > 0, where m is an exponential function on R™ x (0, 00). Thus
the case (iv) follows immediately from (3.12) and (3.14) with A =1/2u. O

The case (iii) of the above lemma can be interpreted more precisely if some
regularities of U, V are given. In fact, we can obtain the following.

Lemma 3.4. Let U,V : R™ x (0, 00) — C be continuous functions satisfying the
inequality (3.3). If V is a bounded exponential function and U is an unbounded
function, then there exist a € R®, c € C, b € C and C > 0 such that

(3.15) |U(z,t) —c-z 2t < C
forallzeR®, 0<t < 1.

Proof. Since V(z,t) is a continuous exponential function we have V(z,t) =
e“®+ for some ¢ € C*, b € C. Furthermore, since V is bounded, it follows
that ¢ = a,a € R*, R0 < 0. Put y = 0 in (3.3) and divide the result by
V{0, s)| to get
|U(z,t+s) — U(0,s)V(z,t)| + M

V(0,s)|

(3.16) |U(z,t)| <
Thus it follows that
limsup U(z, t) := f(x)
t—0+

exists. Put y = 0 and ¢t — 0% so that U(z,t) — f(x) in (3.3) and use the
triangle inequality to get

(3.17) U(z,s) — f(@)V(0,8)] < M +|U(0,s)|.
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It follows from (3.3), (3.17) and the triangle inequality
(3.18) [f(z+y)V(0,t+5)— f(@)V(y, )V (0,t)— f(y)V (2, 1)V (0, 5)| < M*(, ),

where M*(t,s) = 4M + |U(0,t)| + |U(0, s)| + U(0,t + s)|. Letting t,s — 0T in
(3.18) we have

(3.19) [f(@+y) = f(@)V(y,0) - f(y)V(2,0)] < My
for some M, > 0, which implies
(3.20) l9(z +y) — g(x) — g(y)| < M,

where g(z) = e™"* f(z). Thus it follows from the Hyers-Ulam stability theo-
rem [10], there exists an additive function A(x) such that

lg(x) — A(z)| < My, or |f(z) — A(z)V (z,0)] < M.

Since g is continuous we must have A(z) = ¢ z for some ¢ € C" and that

(3.21) |f(z) —c-z ¥ < My

for all z € R™. It follows from (3.17) and (3.21) that

(3.22) |U(x,t) — ¢z e < My + |U(0, 1)),

where My = M + M,. It follows from (3.16) that U(0,t) is bounded in (0,1).
This completes the proof. a

Proof of Theorem 1.1. Convolving in (1.3) the tensor product E:(x)E;(y) of
n-dimensional heat kernels we have in view of the semigroup property (E; *
E)(x) = Eyy5(z) of the heat kernel

(3:23)  [(uo A) » (E(Es(m)](z, y) = (ue, /Et(w — &+ m)Es(y —n) dn)

= (ug, (Be * Es)(z +y —§))
=U(x+yt+s).

Similarly we have

(3.24) [(u @) * (B () Es(m)](2, v) = Uz, )V (y,9),
[(v @ u) x (B Es(m)](x, y) = V(z,5)U(y, ),

where U(z,t),V(z,t) are the Gauss transforms of u, v, respectively. Thus
by our assumption we have the inequality (3.3). We first consider the cases
when U, V satisfy the inequality (3.4). The case (i) follows immediately from
Lemma 3.3 (i). If U, V are bounded functions, then by the result {21, p. 123,
Theorem 1] the initial values u, v of U, V are bounded measurable functions,
which gives (ii). For the case (iii), letting ¢ — 0% in (3.15) it follows that
u—c-ze*® := B(x) is a bounded measurable function, which gives (iii). Letting
t — 0% in (iv) of Lemma 3.3 the case (iv) follows, since m(z,t) = e***+% for
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some a € C", b € C from the continuity of U, V. Now we consider the case
that U, V satisfy the equation (3.5). Letting ¢, s — 07 in (3.5) we have

(3.25) uoA-u®v—vQu=0.

By Lemma 3.1 and the result in [2, p. 180], the solutions of the equation (3.25)
are given by (i), (v), (vi) or
1

(3.26) u= A" v= 56‘”
for some a € C", A € C. Now, the solution (3.26) is contained in the case (iv).
This completes the proof. a

Secondly we prove Theorem 1.2. We first prove the following.

Lemma 3.5. Let U,V : R™ x (0,00) — C satisfy the inequality, there exists a
positive constant M such that

(3.27) V(z+y,t+s) = V(z,t)V(y,s) + Ulz, )U(y,8)| < M
for all z,y € R™,t,s > 0. Then U, V satisfy one of the followings:

(i) U and V are bounded functions,
(ii) V is exponential and U is a bounded function,

(iii) V+ U or V —U is a bounded exponential function,
(iv) V=28, U=30s8,

v) Vz+ y,t + 8) — V(z,t)V(y,s) + Uz, t)U(y,s) = 0 for all z,y €
R™, t,s >0,
where a,c € C*, A € C and 1, m, B are, respectively, additive, unbounded
exponential, and bounded functions on R™ x (0,00).

Proof. As in the proof of Lemma 3.3 we first prove that either there exist
p, v € C, not both zero, and L > 0 such that

(3'28) |pU(CE,t) - VV(y7 S)l <L,
or else
(3.29) V(iz+y,t+s)~V(z,t)V(y,s) — U(z,t)U(y,s) =0

for all z, y € R", t,s > 0. Assume that |pU(z,t) — vV (y,s)| < L for some
p, v € C implies p, v = 0. For this case, we can choose y; and s; satisfying
U(y1,51) # 0. Let

(3.30) F(z,y,t,8) = V(z +y,t +35) = V(z,)V(y,s) + U(z,)U(y, s)-
Then we have
(3.31) U(z,t) = XV (z,t) + M\V(z +y1,t + 51)) — M F(z,y1,¢, 51),

where A\ = ‘,;(zi:zi) and \; = ——m. Using (3.30) and (3.31) we have

(332) V(@+y)+z(t+s)+r)
=V(+y,t+s)V(z,r)—U(x+y,t+s)U(z,7)+ F(z +y,2,t+s,7)
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= (V@ OV (,5) - UG, Uy, 5) + Fa,,4,5) )V (z,7)
- ()\OV(x+y,t—|—s) +MVi{z+y+uy,t+s+s1)

—MF(z+y,y1,t+s, 51)) U(z,T)
+F(z+y,zt+sr)
= (V@ 0V(1.9) = U@ Uy, 5) + (@, 3,8, 9)) V(=)

= 20(Vi@ OV (y,5) ~ Ule, )0y, 5) + F(a,9,1,5) Uz, 7)
_ )\1(

Ve, t)V(y+y1,s+s1) = Uz, )U(y +y1,8 + 1)

+ F{z,y +y1,t, 8+ 51)>U(z,r)
+MF(z+y,y1,t+8,51)U(z,7) + Flz +y,2,t + s,7).

On the other hand, we can write
(3.33)
V(e+(@y+2),t+ (s+71))
= V(@ )V (y+z,547) = U, U(y+ 2,5 +7) + Fle,y + 2, L5+ 7).

By equating the right hand sides of (3.32) and (3.33) we have
(3.34)

V() (V(g, $)V(2,7) = MoV @)Uz 1) = MV(y + 91,5+ 1)U (z,7)
~Vly+2z,s40) + UG~ Ul )V (1) + Uy, U (1)
+MUy+yi,s+s1)U(z,7) + Uy + z,s—i—r))

= —F(z,y,4,5)V(2,7) + Mo F(z, 9,1, 5)U(z,7) + MF(2,y + 31,8, s+ 51)U(z,7)
—MF(@+y,y,t+8,81)U(z,1) — F(z +y,2z,t+5,7)+ Flx,y + z,t,s + 7).

When y, s, z, r are fixed, the right side of (3.34) is bounded. Thus by our
assumption that |pU(xz,t) — vV (y,s)| < L for some p, v € C implies p, v = 0,
we have

(3.35) Flz,y+z,t,s+r)~ Flzx +y,2,t+s,7)
= F($7y7t73)v(277‘) + (_ AOF(%?/J,S) - )\1F($7y+y17t73+31)
+>\1F($+y7y17t+5751)>U(Z7T)'

Since F is bounded, our assumption implies ' = 0. This gives the case (v).
Now we assume that the inequality (3.28) holds for some p, v, not both zero.
If U is bounded, the cases (i) and (ii) follow immediately from Lemma 3.2. It
remains to consider the case when both U and V are unbounded functions. For
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this case, as in the proof of Lemma 3.3 we have
(3.36) U(z,t) = AV(z,t) + B(z,t)
for some A € C, X # 0 and a bounded function B. Putting (3.36) in (3.27) and A
using the triangle inequality we have

Viz+y,t+s)~V(z,t) (1 - )V(y,s) - AB(y, s)) |
< |B(z,1) (Bly,s) + A\V(y,s)) |+ M

for all z, y € R", t,s > 0. Thus, the left hand side of (3.37) is bounded for
each y € R" and s > 0. Applying Lemma 3.2, we have

(3.37)

(338) (1 - A?)V(y, S) - >‘B(y7 S) = m(ya 5)
for all y € R™, s > 0, where m is an exponential function on R™ x (0, 00). Thus
the case (iil) follows if A = %1, and the case (iv) follows if A % &1. O

Proof of Theorem 1.2. Following the same approach as in Theorem 1.1 the
Gauss transform U, V of u, v satisfy one of the conditions (i)~(v) of Lemma 3.5.
By the same reason as in the proof of Theorem 1.1 the conditions (i), (ii), (iv)
follow from (i), (ii), (iv) of Lemma 3.5. For the case (iii), assume that U,V
satisfy (iil) of Lemma 3.5. Then we may write

(3.39) tU=m-V,

where m is a bounded exponential function. Putting (3.39) in (3.27) and using
the triangle inequality we have, for some M; > 0,

(3.40)

V(z+y,t+s) = V(z,t)m(y, s) — V(y, s)m(z, t)]| < |m(z, t)m(y, s)| + M < My

for all z, y € R™, t,s > 0. Applying Lemma 3.3 we have
(3.41) V(z,t) = c-x 2% 4 B(x,t)

for some ¢ € C*,a € R", b € C. Letting t — 0" in (3.41) we have the case
(iii) of Theorem 1.2. Finally, if U, V satisfy the equation (v) in Lemma 3.5, we
have

(3.42) voA-v®v—u®u=0.

The nontrivial solutions of the equation (3.42) are given by (v), (vi), or con-
tained in the case (iii) or (iv) of Theorem 1.2. This completes the proof. [l
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