Korean J. Math. 17 (2009), No. 4, pp. 481–485

REMARKS ON THE SUTURED MANIFOLDS

KI SUNG PARK

ABSTRACT. Gabai's sutured manifold theory has produced many remarkable results in knot theory. Let M be the compact oriented 3-manifold and (M, γ) be sutured manifold. The aim of this note is to show that there exist a sutured manifold decomposition and a surface of M which defines a sutured manifold decomposition.

1. Introduction

A 3-manifold M is a separable metric space in which every point has a neighborhood homeomorphic to an open set in $R^2 \times [0, \infty)$. A point in M which has no neighborhood homeomorphic to R^3 is called a boundary of M. The set of all boundary points is a surface denoted ∂M .

In this paper M is a compact oriented 3-manifold. If R and S are oriented submanifolds of M, then [R] denotes the homology class which R represents and N(S) denotes the or a product neighborhood of S in M. Furthermore, if dim R + dim S = dim M, then <, > denotes their algebraic intersection number. IntD denotes the interior of D. Finally, basic concepts and terminologies concerning 3-manifold can be found in [2] and [4].

In [6] Thurston defines a pseudonorm on $H_2(M, \partial M)$ and $H_2(M)$. Let χ denote the Euler-characteristic. For S a connected orientable compact surface, define

 $\chi_{-}(S) = \max\{0, -\chi(S)\}$. That is, $\chi_{-}(S)$ is $-\chi(S)$ unless S is a sphere or a disk, in which case $\chi_{-}(S) = 0$. For S not necessarily connected, define $\chi_{-}(S) = \sum\{\chi_{-}(S_i)|S_i \text{ a component of } S\}$. If S has no component S_i with $\chi(S_i) \leq 0$, then $\chi_{-}(S) = 0$. Equivalently, $-\chi_{-}(S)$ is the sum of the Euler-characteristics of the nonsimply connected components of S.

Received October 15, 2009. Revised December 1, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 57N10, 57M27.

Key words and phrases: Knot theory, compact oriented manifold, sutured manifold.

Ki Sung Park

Let N be a subsurface of ∂M for M. For a homology class $z \in H_2(M, N)$, the Thurston norm of the class z is defined by

$$x(z) = \min\{\chi_{-}(S) | (S, \partial S) \subset (M, N) with[S, \partial S] = z\}.$$

Let S be an oriented surface properly embedded in M with $\partial S \subset N$. Then S is norm minimizing in $H_2(M, N)$ if S is incompressible in M and $x_-(S) = x([S])$ for $[S] \in H_2(M, N)$.

Let γ be a compact 2-manifold in ∂M . The manifold pair (M, γ) is a sutured manifold if we have the following conditions (i) γ is the union of mutually disjoint annuli and tori. We denoted the union of annuli by $A(\gamma)$ and the union of tori by $T(\gamma)$. (ii) Each component of $A(\gamma)$ contains an oriented core loop, called a suture. We denote the set of sutures by $s(\gamma)$. (iii) $R(\gamma) = \partial M - Int(\gamma)$ is oriented so that each component of $\partial R(\gamma)$ is homologous to a component of $s(\gamma)$ in γ . Define $R_+(\gamma)(orR_-(\gamma))$ to be union of those components of $R(\gamma)$ whose positive normal vectors point outward(or inward) of M.

Sutured manifolds were introduced by David Gabai to study taut foliations on 3-manifolds, and they proved to be powerful tools in 3dimensional topology. A 3-sutured manifold can be thought of as a 3-manifold with boundary, with some disjoint simple closed curves (annular sutures) drawn on the boundary.

If $S \subset M$ is an oriented compact surface (transverse to γ), we can cut M open along S to get a new sutured manifold (M', γ') . A sutured manifold (M, γ) is taut if M is irreducible and $R(\gamma)$ is norm minimizing in $H_2(M, N)$.

In this paper we state the following results : If (M, γ) is a taut and $H_2(M, N)$ is nontrivial, then there exists a sutured manifold decomposition and a surface of M which defines a sutured manifold decomposition.

2. Main results

Let (M, γ) be a sutured manifold, and S a properly embedded surface in M such that for every component λ of $S \cap \lambda$ one of $(1) \sim (3)$ holds :

- (1) λ is a properly embedded nonseparating arc in γ .
- (2) λ is a simple closed curve in an annular component A of γ in the same homology class as $A \cap s(\gamma)$.
- (3) λ is a homotopically nontrivial curve in a total component T of γ , and if δ is another component of $T \cap S$, then λ and δ represent the

482

same homology class in $H_1(T)$. Then S defines a sutured manifold decomposition

$$(M,\gamma) \xrightarrow{S} (M',\gamma')$$
.

where M' = M - IntN(S) and $\gamma' = (\gamma \cap M') \cup N(S'_+ \cap R_-(\gamma)) \cup N(S'_- \cap R_+(\gamma)), R_+(\gamma') = ((R_+(\gamma) \cap M') \cup S'_+) - Int(\gamma'), R_-(\gamma') = ((R_-(\gamma) \cap M') \cup S'_-) - Int(\gamma'),$ where $S'_+(or S'_-)$ is that component of $\partial N(S) \cap M'$ whose normal vector point outward(inward) M'. If $(M, \gamma) \xrightarrow{S} (M', \gamma')$ is a sutured manifold decomposition, define

$$S_{+} = S'_{+} \cap R_{+}(\gamma'), \ S_{-} = S'_{-} \cap R_{-}(\gamma').$$

LEMMA 2.1. In [6]. Let (M, γ) be a taut. Let N be the manifold with boundary obtained by doubling M along $R(\gamma)$, and let $z \in H_2(N, \partial N)$. Then there exists an integer $n \ge 0$ and a properly embedded oriented surface T such that the following hold.

- (i) [T] = n[R] + z and T is norm minimizing.
- (ii) If S is a surface obtained by doing cut and paste surgery to T and either R₊(γ) or R₋(γ), then S is norm minimizing, and each component of S ∩ γ satisfies one of three conditions of the sutured manifold decomposition where (M, γ) is viewed as being embedded in N.
- (iii) If V is a component of $R(\gamma)$, then no nontrivial subset of $V \cap T$ is homologically trivial in $H_1(V, \partial V)$.

LEMMA 2.2. In [5]. Let $(M, \gamma) \xrightarrow{D} (M', \gamma')$ be a decomposition such that either D is a disc and $|D \cap s(\gamma)| = 2$ or D is an annulus with one component of ∂D lying in each of $R_+(\gamma)$ and $R_-(\gamma)$. Then (M, γ) is taut if and only if (M', γ') is taut.

Suppose (M, γ) is a sutured manifold and $(M, \gamma) \xrightarrow{S} (M', \gamma')$ is a sutured manifold decomposition. It is well known that if (M', γ') is taut, then so is (M, γ) .

THEOREM 2.3. If (M, γ) is a taut and $H_2(M, \partial M)$ is nontrivial, then there exists a decomposition $(M, \gamma) \xrightarrow{S} (M'', \gamma'')$ such that (M'', γ'') is taut, S is connected, and $0 \neq [\partial S] \in H_1(\partial M)$ if $\partial M \neq \emptyset$. Ki Sung Park

Proof. If M is closed let S be any norm minimizing surface. If $\partial M \neq \emptyset$, let P be a properly embedded surface in M, N the 3-manifold obtained by doubling M along $R(\gamma)$, and P' the oriented surface in N obtained by doubling P along $\partial P - Int(\gamma)$. Let $z = [P'] \in H_2(N, \partial N)$, T be the properly embedded oriented surface obtained by applying Lemma 2.1 to z, T' be the surface obtained by doing surgery with T and $R(\gamma)$, $S' = T \cap M$, and S a component of S' such that $0 \neq [\partial S] \in H_1(\partial M)$. Consider the decompositions.

$$(M, \gamma) \xrightarrow{S} (M'', \gamma'')$$
$$(M, \gamma) \xrightarrow{S'} (M', \gamma')$$
$$(M, \partial N) \xrightarrow{T'} (N', \delta').$$

It suffices to show (M'', γ'') is taut. There exists a set D of properly embedded pairwise disjoint annuli and discs in N' satisfying the hypotheses of Lemma 2.2 such that the decomposition $(N', \delta') \xrightarrow{D} (N'', \delta'')$ yields (M', γ') as a component of (N'', δ'') . By Lemma 2.2, hence (M', γ') is taut. In order to complete the proof we consider the commutative diagram:

THEOREM 2.4. If (M, γ) is a taut and $\alpha \in H_2(M, \partial M)$ is nontrivial, then there exists a surface $(S, \partial S) \subset (M, \partial M)$ such that $[S, \partial S] = \alpha$ and $(M, \gamma) \xrightarrow{S} (M', \gamma')$ is a taut decomposition.

Proof. Let N be the manifold obtained by doubling M along $R(\gamma)$. Let $z \in H_2(N, \partial N)$ be the class obtained by doubling α . Now apply Lemma 2.1 to obtain the norm minimizing surface $T \subset N$ where z =

484

 $[T] \in H_2(N, \partial N)$. Note that if δ is a component of $\partial R(\gamma)$, then $|\delta \cap T| = |\langle \delta, T \rangle|$.

Let S' be a union of components of $T \cap M$ such that S' is nonseparating and $[S', \partial S'] = [T, \partial T] \cap M = \alpha \in H_2(M, \partial M).$

By the proof of Theorem 2.3 we conclude that the decomposition

$$(M,\gamma) \xrightarrow{S} (M',\gamma')$$

yields a taut. If V is a component of $R(\gamma)$ such that $\partial V \cap S' \neq \emptyset$, then $V \cap S'$ is homologous in $H_1(V, \partial V)$ to a set of arcs λ such that $|\delta \cap \lambda| = | < \delta, \ \lambda > |$ for each component δ of ∂V . Note that if $\partial V \cap S' \neq \emptyset$, then $V \cap S'$ is homologous to a set λ of parallel coherently oriented closed curves. And we can modify S' near ∂M to find the desired S.

References

- D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18(1983), 445-503.
- [2] J. Hempel, 3-manifolds, Annals of Math. Studies 86, Princeton University Press, 1976.
- [3] Akio Kawauchi, A survey of knot theory, Birkhauser Verlag, 1996.
- [4] W. Jaco, Lectures on three-manifold topology, CBMS series 43, Amer. Math. Soc., Providence, 1980.
- [5] M. Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geol. 29(1989), 557-614.
- [6] W. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc., Vol. 59, 339, 1986.

Department of Mathematics Kangnam University Yongin 449-702, Korea *E-mail*: parkks@kangnam.ac.kr