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FUZZY PARTIAL ORDER
RELATIONS AND FUZZY LATTICES

Inheung Chon

Abstract. We characterize a fuzzy partial order relation using its
level set, find sufficient conditions for the image of a fuzzy partial
order relation to be a fuzzy partial order relation, and find sufficient
conditions for the inverse image of a fuzzy partial order relation to
be a fuzzy partial order relation. Also we define a fuzzy lattice as
fuzzy relations, characterize a fuzzy lattice using its level set, show
that a fuzzy totally ordered set is a distributive fuzzy lattice, and
show that the direct product of two fuzzy lattices is a fuzzy lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([5]) and
this concept was adapted by Goguen ([2]) and Sanchez ([3]) to define
and study fuzzy relations. Yuan and Wu ([4]) introduced the concepts
of fuzzy sublattices and fuzzy ideals of a lattice. Ajmal and Thomas
([1]) defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy
sublattices. As a continuation of these studies, we define a fuzzy lattice
as a fuzzy relation and work on fuzzy posets and fuzzy lattices in this
note.

In section 2, we characterize a fuzzy partial order relation using
its level set, find sufficient conditions for the image of a fuzzy partial
order relation to be a fuzzy partial order relation, and find sufficient
conditions for the inverse image of a fuzzy partial order relation to be
a fuzzy partial order relation. In section 3, we define a fuzzy lattice
as a fuzzy relation, develop some basic properties of fuzzy lattices,
characterize a fuzzy lattice using its level set, show that a fuzzy totally
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ordered set is a distributive fuzzy lattice, and show that the direct
product of two fuzzy lattices is a fuzzy lattice.

2. Fuzzy partial order relations

In this section we give some definitions and develop some properties
of fuzzy partial order relations.

Definition 2.1. Let X be a set. A function A : X × X → [0, 1]
is called a fuzzy relation in X. The fuzzy relation A in X is re-
flexive iff A(x, x) = 1 for all x ∈ X, A is transitive iff A(x, z) ≥
sup
y∈X

min(A(x, y), A(y, z)), and A is antisymmetric iff A(x, y) > 0 and

A(y, x) > 0 implies x = y. A fuzzy relation A is a fuzzy partial order
relation if A is reflexive, antisymmetric, and transitive. A fuzzy par-
tial order relation A is a fuzzy total order relation iff A(x, y) > 0 or
A(y, x) > 0 for all x, y ∈ X. If A is a fuzzy partial order relation in
a set X, then (X,A) is called a fuzzy partially ordered set or a fuzzy
poset. If B is a fuzzy total order relation in a set X, then (X,B) is
called a fuzzy totally ordered set or a fuzzy chain.

Proposition 2.2. Let (X, A) be a fuzzy poset (or chain) and Y ⊆
X. If B = A|Y×Y , then (Y, B) is a fuzzy poset (or chain), where
B = AY×Y .

Proof. Straightforward. ¤

If A is a fuzzy relation on a set X, then the fuzzy relation A−1 :
X ×X → [0, 1] defined by A−1(x, y) = A(y, x) is called a converse of
A. Note that the converse of any fuzzy partial order relation is itself a
fuzzy partial order relation.

Proposition 2.3. Let {Ai : i ∈ I} be a collection of fuzzy partial
order relations in a set X. Then (X,

⋂
i∈I

Ai) is a fuzzy poset.

Proof. It is obvious that
⋂
i∈I

Ai is reflexive and antisymmetric.
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⋂

i∈I

Ai(x, z) = min
i∈I

Ai(x, z) ≥ min
i∈I

sup
y∈X

min[Ai(x, y), Ai(y, z)]

≥ sup
y∈X

minmin
i∈I

[Ai(x, y), Ai(y, z)]

= sup
y∈X

min[min
i∈I

Ai(x, y),min
i∈I

Ai(y, z)]

= sup
y∈X

min[(
⋂

i∈I

Ai)(x, y), (
⋂

i∈I

Ai)(y, z)].

Thus (X,
⋂n

i=1 Ai) is a fuzzy poset in X. ¤

However, it is easy to see that for fuzzy partial order relations A
and B in a set X, (X, A ∪B) is not necessarily a fuzzy poset.

We define the level set Bp = {(x, y) ∈ X × X : B(x, y) ≥ p} of a
fuzzy relation B in a set X and characterize a relationship between a
fuzzy partial order relation and its level set.

Proposition 2.4. Let B : X ×X → [0, 1] be a fuzzy relation and
let Bp = {(x, y) ∈ X × X : B(x, y) ≥ p}. Then B is a fuzzy partial
order relation iff the level set Bp is a partial order relation in X ×X
for all p such that 0 < p ≤ 1.

Proof. (⇒) Let B be a fuzzy partial order relation. Since B(x, x) =
1 for all x ∈ X, (x, x) ∈ Bp for all p such that 0 < p ≤ 1. Suppose
(x, y) ∈ Bp and (y, x) ∈ BP . Then B(x, y) ≥ p > 0 and B(y, x) ≥ p >
0, and hence x = y for all p such that 0 < p ≤ 1. Suppose (x, y) ∈ Bp

and (y, z) ∈ BP . Then B(x, y) ≥ p and B(y, z) ≥ p. Since B(x, z) ≥
sup
r∈X

min [B(x, r), B(r, z)], B(x, z) ≥ min(B(x, y), B(y, z)) ≥ p, that

is, (x, z) ∈ Bp for all p such that 0 < p ≤ 1.
(⇐) Let Bp be a partial order relation for all p such that 0 < p ≤ 1.
Then (x, x) ∈ Bp for all p such that 0 < p ≤ 1. Thus (x, x) ∈ B1,
that is, B(x, x) = 1. Suppose B(x, y) > 0 and B(y, x) > 0. Then
B(x, y) > v > 0 for some v ∈ R and B(y, x) > w > 0 for some w ∈ R.
Let u = min(v, w). Then B(x, y) > u > 0 and B(y, x) > u > 0.
Thus (x, y), (y, x) ∈ Bu. Since Bu is antisymmetric, x = y. Suppose
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(x, y), (y, z) ∈ Bp. Since Bp is transitive, (x, z) ∈ Bp. That is, if
B(x, y) ≥ p and B(y, z) ≥ p, then B(x, z) ≥ p. Thus

B(x, z) ≥ sup
r∈X

min(B(x, r), B(r, z)).

¤

We find sufficient conditions for the image of a fuzzy partial order
relation in a set to be a fuzzy partial order relation and find sufficient
conditions for the inverse image of a fuzzy partial order relation in a
set to be a fuzzy partial order relation.

Definition 2.5. Let X and Y be sets and let f : X ×X → Y × Y
be a function. Let B be a fuzzy relation in Y . Then f−1(B) is a fuzzy
relation in X defined by f−1(B)(x, y) = B(f(x, y)). Let A be a fuzzy
relation in X. Then f(A) is a fuzzy relation in Y defined by

f(A)(p, q) =





sup
(a,b)∈f−1(p,q)

A(a, b), if f−1(p, q) 6= ∅

0, if f−1(p, q) = ∅.

Theorem 2.6. Let X and Y be sets and let B be a fuzzy partial
order relation in Y . Let φ : X ×X → Y × Y be a map such that

(1) φ1(x, x) = φ2(x, x) for all x ∈ X,
(2) φ1(x, y) = φ1(x, z) for all x, y, z ∈ X,
(3) φ2(p, q) = φ2(r, q) for all p, q, r ∈ X,
(4) p 6= q implies φ1(p, q) 6= φ1(q, p) (or p 6= q implies φ2(p, q) 6=

φ2(q, p)),
where φ(x, y) = (φ1(x, y), φ2(x, y)). Then (X, φ−1(B)) is a fuzzy
poset.

Proof. Since φ1(x, x) = φ2(x, x),

(φ−1(B))(x, x) = B(φ(x, x)) = B(φ1(x, x), φ2(x, x)) = 1

for all x ∈ X. By (1), (2), and (3) of our hypothesis, φ1(x, y) =
φ1(x, x) = φ2(x, x) = φ2(y, x) for all x, y ∈ X.

Suppose (φ−1(B))(x, y) > 0 and (φ−1(B))(y, x) > 0.
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Then
B(φ(x, y)) = B(φ1(x, y), φ2(x, y)) > 0

and
B(φ(y, x)) = B(φ1(y, x), φ2(y, x)) > 0.

Since φ1(x, y) = φ2(y, x) for all x, y ∈ X,

B(φ1(x, y), φ2(x, y)) > 0

and
B(φ2(x, y), φ1(x, y)) > 0.

Since B is antisymmetric, φ1(x, y) = φ2(x, y) = φ1(y, x) = φ2(y, x).
By (4) of our hypothesis, x = y. Thus φ−1(B) is antisymmetric.

(φ−1(B))(x, z) = B(φ(x, z)) = B(φ1(x, z), φ2(x, z))

≥ sup
y∈X

min[B(φ1(x, z), y), B(y, φ2(x, z))].

Since φ1(x, y) = φ1(x, z) and φ2(p, q) = φ2(r, q) by (3) and (4) of
our hypothesis,

(φ−1(B))(x, z) ≥ sup
y∈X

min[B(φ1(x, t), y), B(y, φ2(t, z))]

≥ sup
t∈X

min[B(φ1(x, t), φ2(x, t)), B(φ2(x, t), φ2(t, z))].

Since φ1(x, y) = φ2(y, x) for all x, y ∈ X,

(φ−1(B))(x, z) ≥ sup
t∈X

min[B(φ1(x, t), φ2(x, t)), B(φ1(t, x), φ2(t, z))]

Since φ1(t, x) = φ1(t, z) by (2) of our hypothesis,

(φ−1(B))(x, z) ≥ sup
t∈X

min[B(φ(x, t)), B(φ(t, z))]

= sup
t∈X

min[(φ−1(B))(x, t), (φ−1(B))(t, z)].

¤
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Theorem 2.7. Let X and Y be sets and Let A be a fuzzy partial
order relation in X. Let φ : X ×X → Y × Y be a map such that

(1) for each y ∈ Y , there exists x ∈ X such that φ(x, x) = (y, y),
(2) for each x, z ∈ X, there exists y ∈ Y such that φ(x, z) = (y, y).

Then (Y, φ(A)) is a fuzzy poset.

Proof. By (1) of our hypothesis,

(φ(A))(y, y) = sup
(p,q)∈φ−1(y,y)

A(p, q) = 1

for all y ∈ Y.
If p 6= q, then φ−1(p, q) = ∅ by (2) of our hypothesis, and hence

(φ(A))(p, q) = sup
(s,t)∈φ−1(p,q)

A(s, t) = 0.

By the contrapositive law, (φ(A))(p, q) > 0 implies p = q. Thus
(φ(A))(p, q) > 0 and (φ(A))(q, p) > 0 implies p = q. That is, φ(A)
is antisymmetric. If x = z,

(φ(A))(x, z) = sup
(s,t)∈φ−1(x,x)

A(s, t) = 1

and hence

(φ(A))(x, z) ≥ sup
y∈X

min[(φ(A))(x, y), (φ(A))(y, z)].

Suppose x 6= z. Then x 6= y or z 6= y for all y ∈ Y . If x 6= y,

(φ(A))(x, y) = sup
(s,t)∈φ−1(x,y)

A(s, t) = 0

by (2) of our hypothesis. If y 6= z,

(φ(A)(y, z) = sup (s, t) ∈ φ−1(y, z) A(s, t) = 0.

Thus (φ(A))(x, y) = 0 or (φ(A))(y, z) for all y ∈ Y . That is,

sup
y∈Y

min[(φ(A))(x, y), (φ(A))(y, z)] = 0.

Hence

(φ(A))(x, z) ≥ sup y ∈ Y min[(φ(A))(x, y), (φ(A))(y, z)].

¤
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3. Fuzzy lattices

In this section, we define a fuzzy lattice as a fuzzy partial order
relation and develop some properties of fuzzy lattices.

Definition 3.1. Let (X, A) be a fuzzy poset and let B ⊆ X. An
element u ∈ X is said to be an upper bound for a subset B iff A(b, u) > 0
for all b ∈ B. An upper bound u0 for B is the least upper bound of B
iff A(u0, u) > 0 for every upper bound u for B. An element v ∈ X is
said to be a lower bound for a subset B iff A(v, b) > 0 for all b ∈ B. A
lower bound v0 for B is the greatest lower bound of B iff A(v, v0) > 0
for every lower bound v for B.

We denote the least upper bound of the set {x, y} by x ∨ y and
denote the greatest lower bound of the set {x, y} by x ∧ y.

Definition 3.2. Let (X, A) be a fuzzy poset. (X,A) is a fuzzy
lattice iff x ∨ y and x ∧ y exist for all x, y ∈ X.

Example. Let X = {x, y, z} and let A : X × X → [0, 1] be a fuzzy
relation such that A(x, x) = A(y, y) = A(z, z) = 1, A(x, y) = A(x, z) =
A(y, z) = 0, A(y, x) = 0.5, A(z, x) = 0.3, and A(z, y) = 0.2. Then it is
easily checked that A is a fuzzy partial order relation. Also x ∨ y = x,
x ∨ z = x, y ∨ z = y, x ∧ y = y, x ∧ z = z, and y ∧ z = z. Thus (X, A)
is a fuzzy lattice.

Proposition 3.3. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X.
Then

(1) A(x, x∨y) > 0, A(y, x∨y) > 0, A(x∧y, x) > 0, A(x∧y, y) > 0.
(2) A(x, z) > 0 and A(y, z) > 0 implies A(x ∨ y, z) > 0.
(3) A(z, x) > 0 and A(z, y) > 0 implies A(z, x ∧ y) > 0.
(4) A(x, y) > 0 iff x ∨ y = y.
(5) A(x, y) > 0 iff x ∧ y = x.
(6) If A(y, z) > 0, then A(x∧y, x∧z) > 0 and A(x∨y, x∨z) > 0.

Proof. (1), (2), and (3) are Straightforward.
(4) Suppose A(x, y) > 0. Since A(y, y) = 1 > 0, A(x ∨ y, y) > 0 by
(2). Since A(y, x∨ y) > 0 by (1), x∨ y = y by the antisymmetry of A.
Conversely, suppose x ∨ y = y. Then A(x, y) = A(x, x ∨ y) > 0 by (1).
(5) The proof is similar to that of (4).
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(6) Suppose A(y, z) > 0. Then

A(x ∧ y, z) ≥ sup
p∈X

min[A(x ∧ y, p), A(p, z)]

≥ min [A(x ∧ y, y), A(y, z)] > 0.

Since A(x ∧ y, x) > 0 by (1), x ∧ y is a lower bound of {x, z}. Since
x ∧ z is the greatest lower bound of {x, z}, A(x ∧ y, x ∧ z) > 0.

A(y, x ∨ z) ≥ sup
p∈X

min[A(y, p), A(p, x ∨ z)]

≥ min [A(y, z), A(z, x ∨ z)] > 0.

Since A(x, x ∨ z) > 0 by (1), A(x ∨ y, x ∨ z) > 0 by (2). ¤

Proposition 3.4. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X.
Then

(1) x ∨ x = x, x ∧ x = x.
(2) x ∨ y = y ∨ x, x ∧ y = y ∧ x.
(3) (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z).
(4) (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x.

Proof. (1) and (2) are straightforward.
(3) Since A(x, x ∨ (y ∨ z)) > 0 and

A(y, x ∨ (y ∨ z)) ≥ sup
k∈X

min[A(y, k), A(k, x ∨ (y ∨ z))]

≥ min[A(y, y ∨ z), A(y ∨ z, x ∨ (y ∨ z))] > 0

A(x ∨ y, x ∨ (y ∨ z)) > 0 by (2) of Proposition 3.3. Since

A(z, x ∨ (y ∨ z)) ≥ sup
k∈X

min[A(z, k), A(k, x ∨ (y ∨ z))]

≥ min[A(z, y ∨ z), A(y ∨ z, x ∨ (y ∨ z))] > 0,

A((x ∨ y) ∨ z, x ∨ (y ∨ z)) > 0 by (2) of Proposition 3.3. Similarly we
may show A(x ∨ (y ∨ z), (x ∨ y) ∨ z) > 0. By the antisymmetry of A,
(x∨y)∨z = x∨ (y∨z). Similarly we may show (x∧y)∧z = x∧ (y∧z).
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(4) Let B = {x∨ y, x}. Since A(x, x∨ y) > 0 and A(x, x) = 1 > 0, x is
a lower bound of B. If z is a lower bound of B, then A(z, x) > 0. Thus
x is the greatest lower bound of B. Hence (x ∨ y) ∧ x = x. Similarly
we may show (x ∧ y) ∨ x = x. ¤

We now turn to a characterization of the relationship between a
fuzzy lattice and its level set.

Proposition 3.5. Let B : X ×X → [0, 1] be a fuzzy relation and
let Bp = {(x, y) ∈ X × X : B(x, y) ≥ p}. If (X,Bp) is a lattice for
every p with 0 < p ≤ 1, then (X, B) is a fuzzy lattice.

Proof. Let (X,Bp) be a lattice for every p with 0 < p ≤ 1. Then
(X, B) is a fuzzy poset by Proposition 2.4. For x, y ∈ X, there ex-
ists r ∈ X such that (x, r) ∈ Bp, (y, r) ∈ Bp, and (r, u) ∈ Bp for
every upper bound u for {x, y}. That is, there exists r ∈ X such that
B(x, r) ≥ p > 0, B(y, r) ≥ p > 0, and B(r, u) ≥ p > 0 for every upper
bound u for {x, y}. Thus there exists a least upper bound r ∈ X of
{x, y}. Similarly we may show that there exists a greatest lower bound
c ∈ X of {x, y}. Hence (X,B) is a fuzzy lattice. ¤

Proposition 3.6. Let B : X ×X → [0, 1] be a fuzzy relation and
let Bp = {(x, y) ∈ X ×X : B(x, y) ≥ p}. If (X,B) is a fuzzy lattice,
then (X,Bp) is a lattice for some p > 0.

Proof. Let (X,B) be a fuzzy lattice. Then Bp is a partial order
relation for every p with 0 < p ≤ 1 by Proposition 2.4. Let x, y ∈ X
and let U be the set of all upper bounds for {x, y} and L be the set of all
lower bounds for {x, y}. Then there exists r ∈ X such that B(x, r) > 0,
B(y, r) > 0, and B(r, u) > 0 for all u ∈ U and there exists c ∈ X such
that B(c, x) > 0, B(c, y) > 0, and B(l, c) > 0 for all l ∈ L. Let
p = min[B(x, r), B(y, r), B(r, u), B(c, x), B(c, y), B(l, c)] > 0. Then
there exists r ∈ X such that B(x, r) ≥ p > 0, B(y, r) ≥ p > 0,
and B(r, u) ≥ p > 0 for all u ∈ U and there exists c ∈ X such that
B(c, x) ≥ p > 0, B(c, y) ≥ p > 0, and B(l, c) ≥ p > 0 for all l ∈ L.
That is, there exists r ∈ X such that (x, r) ∈ Bp, (y, r) ∈ Bp, and
(r, u) ∈ Bp for all u ∈ U and there exists c ∈ X such that (c, x) ∈ Bp,
(c, y) ∈ Bp, and (l, c) ∈ Bp for all l ∈ L. Thus there exists a least
upper bound r ∈ X of {x, y} and there exists a greatest lower bound
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c ∈ X of {x, y} for some p > 0. Hence (X, Bp) is a lattice for some
p > 0. ¤

We now turn to the characterizations of distributive fuzzy lattices
and modular fuzzy lattices.

Proposition 3.7. (Distributive inequalities) Let (X, A) be a fuzzy
lattice and let x, y, z ∈ X. Then A((x ∧ y) ∨ (x ∧ z), x ∧ (y ∨ z)) > 0
and A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)) > 0.

Proof. Since A(x∧y, y) > 0 and A(y, y∨z) > 0, A(x∧y, y∨z) > 0.
Since A(x∧y, x) > 0, A(x∧y, x∧(y∨z)) > 0 by (3) of Proposition 3.3.
Since A(x ∧ z, z) > 0 and A(z, y ∨ z) > 0, A(x ∧ z, y ∨ z) > 0. Since
A(x∧z, x) > 0, A(x∧z, x∧(y∨z)) > 0 by (3) of Proposition 3.3. Thus
x∧(y∨z) is an upper bound of {x∧y, x∧z}. Since (x∧y)∨(x∧z) is the
least upper bound of {x∧y, x∧z}, A((x∧y)∨ (x∧z), x∧ (y∨z)) > 0.
Similarly, we may prove A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)) > 0. ¤

Definition 3.8. Let (X,A) be a fuzzy lattice. (X, A) is distributive
iff x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).

From the distributive inequalities, (X, A) is distributive iff A(x ∧
(y ∨ z), (x∧ y)∨ (x∧ z)) > 0 and A((x∨ y)∧ (x∨ z), x∨ (y ∧ z)) > 0.

Proposition 3.9. Let (X, A) be a fuzzy lattice and let x, y, z ∈ X.
Then

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z) ⇐⇒ (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).

Proof. (⇒) By (4) of Proposition 3.4, (x∨ y)∧ x = x. Thus A((x∨
y)∧ (x∨ z), x∨ (y ∧ z)) = A([(x∨ y)∧ x]∨ [(x∨ y)∧ z], x∨ (y ∧ z)) =
A(x∨ [z∧ (x∨ y)], x∨ (y∧ z)) = A(x∨ [(z∧x)∨ (z∧ y)], x∨ (y∧ z)) =
A([x ∨ (z ∧ x)] ∨ (z ∧ y), x ∨ (y ∧ z)). Since x ∨ (z ∧ x) = x by (4) of
Proposition 3.4, A((x∨y)∧(x∨z), x∨(y∧z)) = A(x∨(z∧y), x∨(y∧
z)) = A(x∨(y∧z), x∨(y∧z)). Thus A((x∨y)∧(x∨z), x∨(y∧z)) > 0.
Similarly we may show A(x ∨ (y ∧ z), (x ∨ y) ∧ (x ∨ z)) > 0. Since A
is antisymmetric, (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).
(⇐) A((x∧y)∨(x∧z), x∧(y∨z)) = A([(x∧y)∨x]∧[(x∧y)∨z], x∧(y∨
z)) = A(x∧[z∨(x∧y)], x∧(y∨z)) = A(x∧[(z∨x)∧(z∨y)], x∧(y∨z)) =
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A([x ∧ (z ∨ x)] ∧ (z ∨ y), x ∧ (y ∨ z)) = A(x ∧ (z ∨ y), x ∧ (y ∨ z)) =
A(x ∧ (y ∨ z), x ∧ (y ∨ z)). Thus A((x ∧ y) ∨ (x ∧ z), x ∧ (y ∨ z)) > 0.
Similarly we may show A(x ∧ (y ∨ z), (x ∧ y) ∨ (x ∧ z)) > 0. Since A
is antisymmetric, (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z). ¤

Theorem 3.10. Let (X, A) be a fuzzy totally ordered set. Then
(X, A) is a distributive fuzzy lattice.

Proof. Let (X, A) be a fuzzy totally ordered set and let x, y ∈ X.
Then A(x, y) > 0 or A(y, x) > 0. Suppose A(x, y) > 0. Since A(y, y) =
1 > 0, y is an upper bound of {x, y}. Let u be an upper bound of {x, y}.
Then A(y, u) > 0. Thus y is the least upper bound of {x, y}. Since
A(x, y) > 0 and A(x, x) = 1 > 0, x is a lower bound of {x, y}. Let v
be a lower bound of {x, y}. Then A(v, x) > 0. Thus x is the greatest
lower bound of {x, y}. In case of A(y, x) > 0, we may show that x is
the least upper bound of {x, y} and y is the greatest lower bound of
{x, y}. Hence (X,A) is a fuzzy lattice.
(i) First, we consider the case of A(x, y) > 0.
Suppose A(x, y) > 0. Then x ∧ y = x by (5) of Proposition 3.3. Since
A(x∧(y∨z), x) > 0 by (1) of Proposition 3.3, A(x∧(y∨z), x∧y) > 0.
By (1) of Proposition 3.3, A(x∧y, (x∧y)∨(x∧z)) > 0. A(x∧(y∨z), (x∧
y) ∨ (x ∧ z)) ≥ sup

k∈X
min [A(x ∧ (y ∨ z), k), A(k, (x ∧ y) ∨ (x ∧ z))] ≥

min [A(x ∧ (y ∨ z), x ∧ y), A(x ∧ y, (x ∧ y) ∨ (x ∧ z)] > 0. By the
distributive inequalities, x∧ (y ∨ z) = (x∧ y)∨ (x∧ z). By Proposition
3.9, (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z). Thus (X, A) is distributive.
(ii) We consider the case of A(y, x) > 0.
Suppose A(y, x) > 0. Then x ∨ y = x by (4) of Proposition 3.3.
Thus A((x ∨ y) ∧ (x ∨ z), x) = A(x ∧ (x ∨ z), x) > 0. By (1) of
Proposition 3.3, A(x, x∨(y∧z)) > 0. A((x∨y)∧(x∨z), x∨(y∧z)) ≥
sup
k∈X

min [A((x∨ y)∧ (x∨ z), k), A(k, x∨ (y∧ z))] ≥ min [A((x∨ y)∧
(x ∨ z), x), A(x, x ∨ (y ∧ z))] > 0. By the distributive inequalities,
(x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z). By Proposition 3.9, x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z). Thus (X, A) is distributive. ¤

Proposition 3.11. (Modular inequality) Let (X, A) be a fuzzy lat-
tice and let
x, y, z ∈ X. Then A(x, z) > 0 implies A(x ∨ (y ∧ z), (x ∨ y) ∧ z) > 0.
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Proof. Since A(x, x∨y) > 0 and A(x, z) > 0, A(x, (x∨y)∧ z) > 0.
Since A(y ∧ z, y) > 0 and A(y, x ∨ y) > 0, A(y ∧ z, x ∨ y) > 0. Since
A(y ∧ z, z) > 0, A(y ∧ z, (x ∨ y) ∧ z) > 0 by (3) of Proposition 3.3.
Thus A(x ∨ (y ∧ z), (x ∨ y) ∧ z) > 0. ¤

Definition 3.12. A fuzzy lattice (X, A) is modular iff A(x, z) > 0
implies x ∨ (y ∧ z) = (x ∨ y) ∧ z for x, y, z ∈ X.

By the modular inequality, a fuzzy lattice (X, A) is modular iff
A(x, z) > 0 implies A((x ∨ y) ∧ z, x ∨ (y ∧ z)) > 0 for x, y, z ∈ X.

Proposition 3.13. Let (X, A) be a distributive fuzzy lattice. Then
(X, A) is modular.

Proof. Since (X, A) is distributive, (x∨y)∧z = (x∧z)∨(y∧z). Thus
A((x∨y)∧z, x∨(y∧z)) = A((x∧z)∨(y∧z), x∨(y∧z)). Since A(x, z) > 0,
x ∧ z = x by (5) of Proposition 3.3. Thus A((x ∨ y) ∧ z, x ∨ (y ∧ z)) =
A(x ∨ (y ∧ z), x ∨ (y ∧ z)) > 0. Thus (x ∨ y) ∧ z = x ∨ (y ∧ z). ¤

We now turn to the direct product of fuzzy lattices.

Definition 3.14. Let (P, A) and (Q,B) be fuzzy posets. The direct
product PQ of P and Q is defined by (PQ, A × B), where A × B :
PQ → [0, 1] is a fuzzy relation defined by (A× B)((p1, q1), (p2, q2)) =
min [A(p1, p2), B(q1, q2)].

Theorem 3.15. Let (P, A) and (Q,B) be fuzzy lattices. The the
direct product (PQ,A×B) of (P, A) and (Q,B) is a fuzzy lattice.

Proof. Let (p1, q1), (p2, q2) ∈ PQ. Then (A×B)((p1, q1), (p1, q1)) =
min[A(p1, p1), B(q1, q1)] = 1. Suppose (A × B)((p1, q1), (p2, q2)) > 0
and (A×B)((p2, q2), (p1, q1)) > 0. Then min [A(p1, p2), B(q1, q2)] > 0
and min[A(p2, p1), B(q2, q1)] > 0. That is, A(p1, p2) > 0, A(p2, p1) > 0,
B(q1, q2) > 0, and B(q2, q1) > 0. Thus p1 = p2 and q1 = q2, that is,
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(p1, q1) = (p2, q2).

(A×B)((p1, q1), (p2, q2)) = min[A(p1, p2), B(q1, q2)]

≥ min[sup
p∈P

min(A(p1, p), A(p, p2)), sup
q∈Q

min(B(q1, q), B(q, q2))]

≥ sup
(p,q)∈PQ

min[min(A(p1, p), A(p, p2)),min(B(q1, q), B(q, q2))]

= sup
(p,q)∈PQ

min[A(p1, p), B(q1, q), A(p, p2), B(q, q2)]

= sup
(p,q)∈PQ

min[min(A(p1, p), B(q1, q)), min(A(p, p2), B(q, q2))]

= sup
(p,q)∈PQ

min[(A×B)((p1, q1), (p, q)), (A×B)((p, q), (p2, q2))].

Thus PQ is a fuzzy partial order relation.
Let (p1, q1), (p2, q2) ∈ PQ. Then (A×B)((p1, q1), (p1 ∨ p2, q1 ∨ q2)) =
min [A(p1, p1 ∨ p2), B(q1, q1 ∨ q2)] > 0 by (1) of Proposition 3.3. Sim-
ilarly (A × B)((p2, q2), (p1 ∨ p2, q1 ∨ q2)) > 0. Thus (p1 ∨ p2, q1 ∨
q2) is an upper bound of {(p1, q1), (p2, q2)}. Let (s, t) be an upper
bound of {(p1, q1), (p2, q2)}. Then (A × B)((p1, q1), (s, t)) > 0 and
(A × B)((p2, q2), (s, t)) > 0. That is, min [A(p1, s), B(q1, t)] > 0
and min [A(p2, s), B(q2, t)] > 0. Since A(p1, s) > 0 and A(p2, s) >
0, A(p1 ∨ p2, s) > 0 by (2) of Proposition 3.3. Since B(q1, t) > 0
and B(q2, t) > 0, B(q1 ∨ q2, t) > 0 by (2) of Proposition 3.3. Thus
(A×B)((p1∨p2, q1∨ q2), (s, t)) = min [A(p1∨p2, s), B(q1∨ q2, t)] > 0.
That is, (p1∨p2, q1∨ q2) is the least upper bound of {(p1, q1), (p2, q2)}.
That is, (p1, q1) ∨ (p2, q2) = (p1 ∨ p2, q1 ∨ q2). Similarly we may show
(p1, q1) ∧ (p2, q2) = (p1 ∧ p2, q1 ∧ q2). Hence (PQ,A × B) is a fuzzy
lattice. ¤
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