FUZZY PARTIAL ORDER RELATIONS AND FUZZY LATTICES

Inheung Chon

Abstract

We characterize a fuzzy partial order relation using its level set, find sufficient conditions for the image of a fuzzy partial order relation to be a fuzzy partial order relation, and find sufficient conditions for the inverse image of a fuzzy partial order relation to be a fuzzy partial order relation. Also we define a fuzzy lattice as fuzzy relations, characterize a fuzzy lattice using its level set, show that a fuzzy totally ordered set is a distributive fuzzy lattice, and show that the direct product of two fuzzy lattices is a fuzzy lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([5]) and this concept was adapted by Goguen ([2]) and Sanchez ([3]) to define and study fuzzy relations. Yuan and $\mathrm{Wu}([4])$ introduced the concepts of fuzzy sublattices and fuzzy ideals of a lattice. Ajmal and Thomas ([1]) defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy sublattices. As a continuation of these studies, we define a fuzzy lattice as a fuzzy relation and work on fuzzy posets and fuzzy lattices in this note.

In section 2, we characterize a fuzzy partial order relation using its level set, find sufficient conditions for the image of a fuzzy partial order relation to be a fuzzy partial order relation, and find sufficient conditions for the inverse image of a fuzzy partial order relation to be a fuzzy partial order relation. In section 3, we define a fuzzy lattice as a fuzzy relation, develop some basic properties of fuzzy lattices, characterize a fuzzy lattice using its level set, show that a fuzzy totally

[^0]ordered set is a distributive fuzzy lattice, and show that the direct product of two fuzzy lattices is a fuzzy lattice.

2. Fuzzy partial order relations

In this section we give some definitions and develop some properties of fuzzy partial order relations.

Definition 2.1. Let X be a set. A function $A: X \times X \rightarrow[0,1]$ is called a fuzzy relation in X. The fuzzy relation A in X is reflexive iff $A(x, x)=1$ for all $x \in X, A$ is transitive iff $A(x, z) \geq$ $\sup ^{\min }(A(x, y), A(y, z))$, and A is antisymmetric iff $A(x, y)>0$ and $y \in X$ $A(y, x)>0$ implies $x=y$. A fuzzy relation A is a fuzzy partial order relation if A is reflexive, antisymmetric, and transitive. A fuzzy partial order relation A is a fuzzy total order relation iff $A(x, y)>0$ or $A(y, x)>0$ for all $x, y \in X$. If A is a fuzzy partial order relation in a set X, then (X, A) is called a fuzzy partially ordered set or a fuzzy poset. If B is a fuzzy total order relation in a set X, then (X, B) is called a fuzzy totally ordered set or a fuzzy chain.

Proposition 2.2. Let (X, A) be a fuzzy poset (or chain) and $Y \subseteq$ X. If $B=\left.A\right|_{Y \times Y}$, then (Y, B) is a fuzzy poset (or chain), where $B=A_{Y \times Y}$.

Proof. Straightforward.

If A is a fuzzy relation on a set X, then the fuzzy relation A^{-1} : $X \times X \rightarrow[0,1]$ defined by $A^{-1}(x, y)=A(y, x)$ is called a converse of A. Note that the converse of any fuzzy partial order relation is itself a fuzzy partial order relation.

Proposition 2.3. Let $\left\{A_{i}: i \in I\right\}$ be a collection of fuzzy partial order relations in a set X. Then $\left(X, \bigcap_{i \in I} A_{i}\right)$ is a fuzzy poset.

Proof. It is obvious that $\bigcap_{i \in I} A_{i}$ is reflexive and antisymmetric.

$$
\begin{aligned}
\bigcap_{i \in I} A_{i}(x, z) & =\min _{i \in I} A_{i}(x, z) \geq \min _{i \in I} \sup _{y \in X} \min \left[A_{i}(x, y), A_{i}(y, z)\right] \\
& \geq \sup _{y \in X} \min \min _{i \in I}\left[A_{i}(x, y), A_{i}(y, z)\right] \\
& =\sup _{y \in X} \min \left[\min _{i \in I} A_{i}(x, y), \min _{i \in I} A_{i}(y, z)\right] \\
& =\sup _{y \in X} \min \left[\left(\bigcap_{i \in I} A_{i}\right)(x, y),\left(\bigcap_{i \in I} A_{i}\right)(y, z)\right] .
\end{aligned}
$$

Thus $\left(X, \bigcap_{i=1}^{n} A_{i}\right)$ is a fuzzy poset in X.

However, it is easy to see that for fuzzy partial order relations A and B in a set $X,(X, A \cup B)$ is not necessarily a fuzzy poset.

We define the level set $B_{p}=\{(x, y) \in X \times X: B(x, y) \geq p\}$ of a fuzzy relation B in a set X and characterize a relationship between a fuzzy partial order relation and its level set.

Proposition 2.4. Let $B: X \times X \rightarrow[0,1]$ be a fuzzy relation and let $B_{p}=\{(x, y) \in X \times X: B(x, y) \geq p\}$. Then B is a fuzzy partial order relation iff the level set B_{p} is a partial order relation in $X \times X$ for all p such that $0<p \leq 1$.

Proof. (\Rightarrow) Let B be a fuzzy partial order relation. Since $B(x, x)=$ 1 for all $x \in X,(x, x) \in B_{p}$ for all p such that $0<p \leq 1$. Suppose $(x, y) \in B_{p}$ and $(y, x) \in B_{P}$. Then $B(x, y) \geq p>0$ and $B(y, x) \geq p>$ 0 , and hence $x=y$ for all p such that $0<p \leq 1$. Suppose $(x, y) \in B_{p}$ and $(y, z) \in B_{P}$. Then $B(x, y) \geq p$ and $B(y, z) \geq p$. Since $B(x, z) \geq$ $\sup _{r \in X} \min [B(x, r), B(r, z)], B(x, z) \geq \min (B(x, y), B(y, z)) \geq p$, that $r \in X$
is, $(x, z) \in B_{p}$ for all p such that $0<p \leq 1$.
(\Leftarrow) Let B_{p} be a partial order relation for all p such that $0<p \leq 1$. Then $(x, x) \in B_{p}$ for all p such that $0<p \leq 1$. Thus $(x, x) \in B_{1}$, that is, $B(x, x)=1$. Suppose $B(x, y)>0$ and $B(y, x)>0$. Then $B(x, y)>v>0$ for some $v \in \mathbb{R}$ and $B(y, x)>w>0$ for some $w \in \mathbb{R}$. Let $u=\min (v, w)$. Then $B(x, y)>u>0$ and $B(y, x)>u>0$. Thus $(x, y),(y, x) \in B_{u}$. Since B_{u} is antisymmetric, $x=y$. Suppose
$(x, y),(y, z) \in B_{p}$. Since B_{p} is transitive, $(x, z) \in B_{p}$. That is, if $B(x, y) \geq p$ and $B(y, z) \geq p$, then $B(x, z) \geq p$. Thus

$$
B(x, z) \geq \sup _{r \in X} \min (B(x, r), B(r, z)) .
$$

We find sufficient conditions for the image of a fuzzy partial order relation in a set to be a fuzzy partial order relation and find sufficient conditions for the inverse image of a fuzzy partial order relation in a set to be a fuzzy partial order relation.

Definition 2.5. Let X and Y be sets and let $f: X \times X \rightarrow Y \times Y$ be a function. Let B be a fuzzy relation in Y. Then $f^{-1}(B)$ is a fuzzy relation in X defined by $f^{-1}(B)(x, y)=B(f(x, y))$. Let A be a fuzzy relation in X. Then $f(A)$ is a fuzzy relation in Y defined by

$$
f(A)(p, q)=\left\{\begin{array}{cl}
\sup _{(a, b) \in f^{-1}(p, q)} A(a, b), & \text { if } f^{-1}(p, q) \neq \emptyset \\
0, & \text { if } f^{-1}(p, q)=\emptyset .
\end{array}\right.
$$

Theorem 2.6. Let X and Y be sets and let B be a fuzzy partial order relation in Y. Let $\phi: X \times X \rightarrow Y \times Y$ be a map such that
(1) $\phi_{1}(x, x)=\phi_{2}(x, x)$ for all $x \in X$,
(2) $\phi_{1}(x, y)=\phi_{1}(x, z)$ for all $x, y, z \in X$,
(3) $\phi_{2}(p, q)=\phi_{2}(r, q)$ for all $p, q, r \in X$,
(4) $p \neq q$ implies $\phi_{1}(p, q) \neq \phi_{1}(q, p)$ (or $p \neq q$ implies $\phi_{2}(p, q) \neq$ $\left.\phi_{2}(q, p)\right)$,
where $\phi(x, y)=\left(\phi_{1}(x, y), \phi_{2}(x, y)\right)$. Then $\left(X, \phi^{-1}(B)\right)$ is a fuzzy poset.

Proof. Since $\phi_{1}(x, x)=\phi_{2}(x, x)$,

$$
\left(\phi^{-1}(B)\right)(x, x)=B(\phi(x, x))=B\left(\phi_{1}(x, x), \phi_{2}(x, x)\right)=1
$$

for all $x \in X$. By (1), (2), and (3) of our hypothesis, $\phi_{1}(x, y)=$ $\phi_{1}(x, x)=\phi_{2}(x, x)=\phi_{2}(y, x)$ for all $x, y \in X$.

Suppose $\left(\phi^{-1}(B)\right)(x, y)>0$ and $\left(\phi^{-1}(B)\right)(y, x)>0$.

Then

$$
B(\phi(x, y))=B\left(\phi_{1}(x, y), \phi_{2}(x, y)\right)>0
$$

and

$$
B(\phi(y, x))=B\left(\phi_{1}(y, x), \phi_{2}(y, x)\right)>0 .
$$

Since $\phi_{1}(x, y)=\phi_{2}(y, x)$ for all $x, y \in X$,

$$
B\left(\phi_{1}(x, y), \phi_{2}(x, y)\right)>0
$$

and

$$
B\left(\phi_{2}(x, y), \phi_{1}(x, y)\right)>0 .
$$

Since B is antisymmetric, $\phi_{1}(x, y)=\phi_{2}(x, y)=\phi_{1}(y, x)=\phi_{2}(y, x)$. By (4) of our hypothesis, $x=y$. Thus $\phi^{-1}(B)$ is antisymmetric.

$$
\begin{aligned}
& \left(\phi^{-1}(B)\right)(x, z)=B(\phi(x, z))=B\left(\phi_{1}(x, z), \phi_{2}(x, z)\right) \\
& \quad \geq \sup _{y \in X} \min \left[B\left(\phi_{1}(x, z), y\right), B\left(y, \phi_{2}(x, z)\right)\right] .
\end{aligned}
$$

Since $\phi_{1}(x, y)=\phi_{1}(x, z)$ and $\phi_{2}(p, q)=\phi_{2}(r, q)$ by (3) and (4) of our hypothesis,

$$
\begin{aligned}
\left(\phi^{-1}(B)\right)(x, z) & \geq \sup _{y \in X} \min \left[B\left(\phi_{1}(x, t), y\right), B\left(y, \phi_{2}(t, z)\right)\right] \\
& \geq \sup _{t \in X} \min \left[B\left(\phi_{1}(x, t), \phi_{2}(x, t)\right), B\left(\phi_{2}(x, t), \phi_{2}(t, z)\right)\right] .
\end{aligned}
$$

Since $\phi_{1}(x, y)=\phi_{2}(y, x)$ for all $x, y \in X$,

$$
\left(\phi^{-1}(B)\right)(x, z) \geq \sup _{t \in X} \min \left[B\left(\phi_{1}(x, t), \phi_{2}(x, t)\right), B\left(\phi_{1}(t, x), \phi_{2}(t, z)\right)\right]
$$

Since $\phi_{1}(t, x)=\phi_{1}(t, z)$ by (2) of our hypothesis,

$$
\begin{aligned}
\left(\phi^{-1}(B)\right)(x, z) & \geq \sup _{t \in X} \min [B(\phi(x, t)), B(\phi(t, z))] \\
& =\sup _{t \in X} \min \left[\left(\phi^{-1}(B)\right)(x, t),\left(\phi^{-1}(B)\right)(t, z)\right] .
\end{aligned}
$$

Theorem 2.7. Let X and Y be sets and Let A be a fuzzy partial order relation in X. Let $\phi: X \times X \rightarrow Y \times Y$ be a map such that
(1) for each $y \in Y$, there exists $x \in X$ such that $\phi(x, x)=(y, y)$,
(2) for each $x, z \in X$, there exists $y \in Y$ such that $\phi(x, z)=(y, y)$. Then $(Y, \phi(A))$ is a fuzzy poset.

Proof. By (1) of our hypothesis,

$$
(\phi(A))(y, y)=\sup _{(p, q) \in \phi^{-1}(y, y)} A(p, q)=1
$$

for all $y \in Y$.
If $p \neq q$, then $\phi^{-1}(p, q)=\emptyset$ by (2) of our hypothesis, and hence

$$
(\phi(A))(p, q)=\sup _{(s, t) \in \phi^{-1}(p, q)} A(s, t)=0
$$

By the contrapositive law, $(\phi(A))(p, q)>0$ implies $p=q$. Thus $(\phi(A))(p, q)>0$ and $(\phi(A))(q, p)>0$ implies $p=q$. That is, $\phi(A)$ is antisymmetric. If $x=z$,

$$
(\phi(A))(x, z)=\sup _{(s, t) \in \phi^{-1}(x, x)} A(s, t)=1
$$

and hence

$$
(\phi(A))(x, z) \geq \sup _{y \in X} \min [(\phi(A))(x, y),(\phi(A))(y, z)] .
$$

Suppose $x \neq z$. Then $x \neq y$ or $z \neq y$ for all $y \in Y$. If $x \neq y$,

$$
(\phi(A))(x, y)=\sup _{(s, t) \in \phi^{-1}(x, y)} A(s, t)=0
$$

by (2) of our hypothesis. If $y \neq z$,

$$
\left(\phi(A)(y, z)=\sup (s, t) \in \phi^{-1}(y, z) A(s, t)=0 .\right.
$$

Thus $(\phi(A))(x, y)=0$ or $(\phi(A))(y, z)$ for all $y \in Y$. That is,

$$
\sup _{y \in Y} \min [(\phi(A))(x, y),(\phi(A))(y, z)]=0 .
$$

Hence

$$
(\phi(A))(x, z) \geq \sup y \in Y \min [(\phi(A))(x, y),(\phi(A))(y, z)] .
$$

3. Fuzzy lattices

In this section, we define a fuzzy lattice as a fuzzy partial order relation and develop some properties of fuzzy lattices.

Definition 3.1. Let (X, A) be a fuzzy poset and let $B \subseteq X$. An element $u \in X$ is said to be an upper bound for a subset B iff $A(b, u)>0$ for all $b \in B$. An upper bound u_{0} for B is the least upper bound of B iff $A\left(u_{0}, u\right)>0$ for every upper bound u for B. An element $v \in X$ is said to be a lower bound for a subset B iff $A(v, b)>0$ for all $b \in B$. A lower bound v_{0} for B is the greatest lower bound of B iff $A\left(v, v_{0}\right)>0$ for every lower bound v for B.

We denote the least upper bound of the set $\{x, y\}$ by $x \vee y$ and denote the greatest lower bound of the set $\{x, y\}$ by $x \wedge y$.

Definition 3.2. Let (X, A) be a fuzzy poset. (X, A) is a fuzzy lattice iff $x \vee y$ and $x \wedge y$ exist for all $x, y \in X$.

Example. Let $X=\{x, y, z\}$ and let $A: X \times X \rightarrow[0,1]$ be a fuzzy relation such that $A(x, x)=A(y, y)=A(z, z)=1, A(x, y)=A(x, z)=$ $A(y, z)=0, A(y, x)=0.5, A(z, x)=0.3$, and $A(z, y)=0.2$. Then it is easily checked that A is a fuzzy partial order relation. Also $x \vee y=x$, $x \vee z=x, y \vee z=y, x \wedge y=y, x \wedge z=z$, and $y \wedge z=z$. Thus (X, A) is a fuzzy lattice.

Proposition 3.3. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then
(1) $A(x, x \vee y)>0, A(y, x \vee y)>0, A(x \wedge y, x)>0, A(x \wedge y, y)>0$.
(2) $A(x, z)>0$ and $A(y, z)>0$ implies $A(x \vee y, z)>0$.
(3) $A(z, x)>0$ and $A(z, y)>0$ implies $A(z, x \wedge y)>0$.
(4) $A(x, y)>0$ iff $x \vee y=y$.
(5) $A(x, y)>0$ iff $x \wedge y=x$.
(6) If $A(y, z)>0$, then $A(x \wedge y, x \wedge z)>0$ and $A(x \vee y, x \vee z)>0$.

Proof. (1), (2), and (3) are Straightforward.
(4) Suppose $A(x, y)>0$. Since $A(y, y)=1>0, A(x \vee y, y)>0$ by (2). Since $A(y, x \vee y)>0$ by (1), $x \vee y=y$ by the antisymmetry of A. Conversely, suppose $x \vee y=y$. Then $A(x, y)=A(x, x \vee y)>0$ by (1).
(5) The proof is similar to that of (4).
(6) Suppose $A(y, z)>0$. Then

$$
\begin{aligned}
A(x \wedge y, z) & \geq \sup _{p \in X} \min [A(x \wedge y, p), A(p, z)] \\
& \geq \min [A(x \wedge y, y), A(y, z)]>0 .
\end{aligned}
$$

Since $A(x \wedge y, x)>0$ by (1), $x \wedge y$ is a lower bound of $\{x, z\}$. Since $x \wedge z$ is the greatest lower bound of $\{x, z\}, A(x \wedge y, x \wedge z)>0$.

$$
\begin{aligned}
A(y, x \vee z) & \geq \sup _{p \in X} \min [A(y, p), A(p, x \vee z)] \\
& \geq \min [A(y, z), A(z, x \vee z)]>0 .
\end{aligned}
$$

Since $A(x, x \vee z)>0$ by (1), $A(x \vee y, x \vee z)>0$ by (2).

Proposition 3.4. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then
(1) $x \vee x=x, x \wedge x=x$.
(2) $x \vee y=y \vee x, x \wedge y=y \wedge x$.
(3) $(x \vee y) \vee z=x \vee(y \vee z),(x \wedge y) \wedge z=x \wedge(y \wedge z)$.
(4) $(x \vee y) \wedge x=x,(x \wedge y) \vee x=x$.

Proof. (1) and (2) are straightforward.
(3) Since $A(x, x \vee(y \vee z))>0$ and

$$
\begin{aligned}
A(y, x \vee(y \vee z)) & \geq \sup _{k \in X} \min [A(y, k), A(k, x \vee(y \vee z))] \\
& \geq \min [A(y, y \vee z), A(y \vee z, x \vee(y \vee z))]>0
\end{aligned}
$$

$A(x \vee y, x \vee(y \vee z))>0$ by (2) of Proposition 3.3. Since

$$
\begin{aligned}
A(z, x \vee(y \vee z)) & \geq \sup _{k \in X} \min [A(z, k), A(k, x \vee(y \vee z))] \\
& \geq \min [A(z, y \vee z), A(y \vee z, x \vee(y \vee z))]>0,
\end{aligned}
$$

$A((x \vee y) \vee z, x \vee(y \vee z))>0$ by (2) of Proposition 3.3. Similarly we may show $A(x \vee(y \vee z),(x \vee y) \vee z)>0$. By the antisymmetry of A, $(x \vee y) \vee z=x \vee(y \vee z)$. Similarly we may show $(x \wedge y) \wedge z=x \wedge(y \wedge z)$.
(4) Let $B=\{x \vee y, x\}$. Since $A(x, x \vee y)>0$ and $A(x, x)=1>0, x$ is a lower bound of B. If z is a lower bound of B, then $A(z, x)>0$. Thus x is the greatest lower bound of B. Hence $(x \vee y) \wedge x=x$. Similarly we may show $(x \wedge y) \vee x=x$.

We now turn to a characterization of the relationship between a fuzzy lattice and its level set.

Proposition 3.5. Let $B: X \times X \rightarrow[0,1]$ be a fuzzy relation and let $B_{p}=\{(x, y) \in X \times X: B(x, y) \geq p\}$. If $\left(X, B_{p}\right)$ is a lattice for every p with $0<p \leq 1$, then (X, B) is a fuzzy lattice.

Proof. Let $\left(X, B_{p}\right)$ be a lattice for every p with $0<p \leq 1$. Then (X, B) is a fuzzy poset by Proposition 2.4. For $x, y \in X$, there exists $r \in X$ such that $(x, r) \in B_{p},(y, r) \in B_{p}$, and $(r, u) \in B_{p}$ for every upper bound u for $\{x, y\}$. That is, there exists $r \in X$ such that $B(x, r) \geq p>0, B(y, r) \geq p>0$, and $B(r, u) \geq p>0$ for every upper bound u for $\{x, y\}$. Thus there exists a least upper bound $r \in X$ of $\{x, y\}$. Similarly we may show that there exists a greatest lower bound $c \in X$ of $\{x, y\}$. Hence (X, B) is a fuzzy lattice.

Proposition 3.6. Let $B: X \times X \rightarrow[0,1]$ be a fuzzy relation and let $B_{p}=\{(x, y) \in X \times X: B(x, y) \geq p\}$. If (X, B) is a fuzzy lattice, then $\left(X, B_{p}\right)$ is a lattice for some $p>0$.

Proof. Let (X, B) be a fuzzy lattice. Then B_{p} is a partial order relation for every p with $0<p \leq 1$ by Proposition 2.4. Let $x, y \in X$ and let U be the set of all upper bounds for $\{x, y\}$ and L be the set of all lower bounds for $\{x, y\}$. Then there exists $r \in X$ such that $B(x, r)>0$, $B(y, r)>0$, and $B(r, u)>0$ for all $u \in U$ and there exists $c \in X$ such that $B(c, x)>0, B(c, y)>0$, and $B(l, c)>0$ for all $l \in L$. Let $p=\min [B(x, r), B(y, r), B(r, u), B(c, x), B(c, y), B(l, c)]>0$. Then there exists $r \in X$ such that $B(x, r) \geq p>0, B(y, r) \geq p>0$, and $B(r, u) \geq p>0$ for all $u \in U$ and there exists $c \in X$ such that $B(c, x) \geq p>0, B(c, y) \geq p>0$, and $B(l, c) \geq p>0$ for all $l \in L$. That is, there exists $r \in X$ such that $(x, r) \in B_{p},(y, r) \in B_{p}$, and $(r, u) \in B_{p}$ for all $u \in U$ and there exists $c \in X$ such that $(c, x) \in B_{p}$, $(c, y) \in B_{p}$, and $(l, c) \in B_{p}$ for all $l \in L$. Thus there exists a least upper bound $r \in X$ of $\{x, y\}$ and there exists a greatest lower bound
$c \in X$ of $\{x, y\}$ for some $p>0$. Hence $\left(X, B_{p}\right)$ is a lattice for some $p>0$.

We now turn to the characterizations of distributive fuzzy lattices and modular fuzzy lattices.

Proposition 3.7. (Distributive inequalities) Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then $A((x \wedge y) \vee(x \wedge z), x \wedge(y \vee z))>0$ and $A(x \vee(y \wedge z),(x \vee y) \wedge(x \vee z))>0$.

Proof. Since $A(x \wedge y, y)>0$ and $A(y, y \vee z)>0, A(x \wedge y, y \vee z)>0$. Since $A(x \wedge y, x)>0, A(x \wedge y, x \wedge(y \vee z))>0$ by (3) of Proposition 3.3. Since $A(x \wedge z, z)>0$ and $A(z, y \vee z)>0, A(x \wedge z, y \vee z)>0$. Since $A(x \wedge z, x)>0, A(x \wedge z, x \wedge(y \vee z))>0$ by (3) of Proposition 3.3. Thus $x \wedge(y \vee z)$ is an upper bound of $\{x \wedge y, x \wedge z\}$. Since $(x \wedge y) \vee(x \wedge z)$ is the least upper bound of $\{x \wedge y, x \wedge z\}, A((x \wedge y) \vee(x \wedge z), x \wedge(y \vee z))>0$. Similarly, we may prove $A(x \vee(y \wedge z),(x \vee y) \wedge(x \vee z))>0$.

Definition 3.8. Let (X, A) be a fuzzy lattice. (X, A) is distributive iff $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and $(x \vee y) \wedge(x \vee z)=x \vee(y \wedge z)$.

From the distributive inequalities, (X, A) is distributive iff $A(x \wedge$ $(y \vee z),(x \wedge y) \vee(x \wedge z))>0$ and $A((x \vee y) \wedge(x \vee z), x \vee(y \wedge z))>0$.

Proposition 3.9. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then

$$
(x \wedge y) \vee(x \wedge z)=x \wedge(y \vee z) \Longleftrightarrow(x \vee y) \wedge(x \vee z)=x \vee(y \wedge z) .
$$

Proof. (\Rightarrow) By (4) of Proposition 3.4, $(x \vee y) \wedge x=x$. Thus $A((x \vee$ $y) \wedge(x \vee z), x \vee(y \wedge z))=A([(x \vee y) \wedge x] \vee[(x \vee y) \wedge z], x \vee(y \wedge z))=$ $A(x \vee[z \wedge(x \vee y)], x \vee(y \wedge z))=A(x \vee[(z \wedge x) \vee(z \wedge y)], x \vee(y \wedge z))=$ $A([x \vee(z \wedge x)] \vee(z \wedge y), x \vee(y \wedge z))$. Since $x \vee(z \wedge x)=x$ by (4) of Proposition 3.4, $A((x \vee y) \wedge(x \vee z), x \vee(y \wedge z))=A(x \vee(z \wedge y), x \vee(y \wedge$ $z))=A(x \vee(y \wedge z), x \vee(y \wedge z))$. Thus $A((x \vee y) \wedge(x \vee z), x \vee(y \wedge z))>0$. Similarly we may show $A(x \vee(y \wedge z),(x \vee y) \wedge(x \vee z))>0$. Since A is antisymmetric, $(x \vee y) \wedge(x \vee z)=x \vee(y \wedge z)$.
$(\Leftarrow) A((x \wedge y) \vee(x \wedge z), x \wedge(y \vee z))=A([(x \wedge y) \vee x] \wedge[(x \wedge y) \vee z], x \wedge(y \vee$ $z))=A(x \wedge[z \vee(x \wedge y)], x \wedge(y \vee z))=A(x \wedge[(z \vee x) \wedge(z \vee y)], x \wedge(y \vee z))=$
$A([x \wedge(z \vee x)] \wedge(z \vee y), x \wedge(y \vee z))=A(x \wedge(z \vee y), x \wedge(y \vee z))=$ $A(x \wedge(y \vee z), x \wedge(y \vee z))$. Thus $A((x \wedge y) \vee(x \wedge z), x \wedge(y \vee z))>0$. Similarly we may show $A(x \wedge(y \vee z),(x \wedge y) \vee(x \wedge z))>0$. Since A is antisymmetric, $(x \wedge y) \vee(x \wedge z)=x \wedge(y \vee z)$.

Theorem 3.10. Let (X, A) be a fuzzy totally ordered set. Then (X, A) is a distributive fuzzy lattice.

Proof. Let (X, A) be a fuzzy totally ordered set and let $x, y \in X$. Then $A(x, y)>0$ or $A(y, x)>0$. Suppose $A(x, y)>0$. Since $A(y, y)=$ $1>0, y$ is an upper bound of $\{x, y\}$. Let u be an upper bound of $\{x, y\}$. Then $A(y, u)>0$. Thus y is the least upper bound of $\{x, y\}$. Since $A(x, y)>0$ and $A(x, x)=1>0, x$ is a lower bound of $\{x, y\}$. Let v be a lower bound of $\{x, y\}$. Then $A(v, x)>0$. Thus x is the greatest lower bound of $\{x, y\}$. In case of $A(y, x)>0$, we may show that x is the least upper bound of $\{x, y\}$ and y is the greatest lower bound of $\{x, y\}$. Hence (X, A) is a fuzzy lattice.
(i) First, we consider the case of $A(x, y)>0$.

Suppose $A(x, y)>0$. Then $x \wedge y=x$ by (5) of Proposition 3.3. Since $A(x \wedge(y \vee z), x)>0$ by (1) of Proposition 3.3, $A(x \wedge(y \vee z), x \wedge y)>0$. By (1) of Proposition 3.3, $A(x \wedge y,(x \wedge y) \vee(x \wedge z))>0 . A(x \wedge(y \vee z),(x \wedge$ $y) \vee(x \wedge z)) \geq \sup _{k \in X} \min [A(x \wedge(y \vee z), k), A(k,(x \wedge y) \vee(x \wedge z))] \geq$ $\min [A(x \wedge(y \vee z), x \wedge y), A(x \wedge y,(x \wedge y) \vee(x \wedge z)]>0$. By the distributive inequalities, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$. By Proposition 3.9, $(x \vee y) \wedge(x \vee z)=x \vee(y \wedge z)$. Thus (X, A) is distributive.
(ii) We consider the case of $A(y, x)>0$.

Suppose $A(y, x)>0$. Then $x \vee y=x$ by (4) of Proposition 3.3. Thus $A((x \vee y) \wedge(x \vee z), x)=A(x \wedge(x \vee z), x)>0$. By (1) of Proposition 3.3, $A(x, x \vee(y \wedge z))>0$. $A((x \vee y) \wedge(x \vee z), x \vee(y \wedge z)) \geq$ $\sup _{\min }[A((x \vee y) \wedge(x \vee z), k), A(k, x \vee(y \wedge z))] \geq \min [A((x \vee y) \wedge$ $k \in X$ $(x \vee z), x), A(x, x \vee(y \wedge z))]>0$. By the distributive inequalities, $(x \vee y) \wedge(x \vee z)=x \vee(y \wedge z)$. By Proposition 3.9, $x \wedge(y \vee z)=$ $(x \wedge y) \vee(x \wedge z)$. Thus (X, A) is distributive.

Proposition 3.11. (Modular inequality) Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then $A(x, z)>0$ implies $A(x \vee(y \wedge z),(x \vee y) \wedge z)>0$.

Proof. Since $A(x, x \vee y)>0$ and $A(x, z)>0, A(x,(x \vee y) \wedge z)>0$. Since $A(y \wedge z, y)>0$ and $A(y, x \vee y)>0, A(y \wedge z, x \vee y)>0$. Since $A(y \wedge z, z)>0, A(y \wedge z,(x \vee y) \wedge z)>0$ by (3) of Proposition 3.3. Thus $A(x \vee(y \wedge z),(x \vee y) \wedge z)>0$.

Definition 3.12. A fuzzy lattice (X, A) is modular iff $A(x, z)>0$ implies $x \vee(y \wedge z)=(x \vee y) \wedge z$ for $x, y, z \in X$.

By the modular inequality, a fuzzy lattice (X, A) is modular iff $A(x, z)>0$ implies $A((x \vee y) \wedge z, x \vee(y \wedge z))>0$ for $x, y, z \in X$.

Proposition 3.13. Let (X, A) be a distributive fuzzy lattice. Then (X, A) is modular.

Proof. Since (X, A) is distributive, $(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)$. Thus $A((x \vee y) \wedge z, x \vee(y \wedge z))=A((x \wedge z) \vee(y \wedge z), x \vee(y \wedge z))$. Since $A(x, z)>0$, $x \wedge z=x$ by (5) of Proposition 3.3. Thus $A((x \vee y) \wedge z, x \vee(y \wedge z))=$ $A(x \vee(y \wedge z), x \vee(y \wedge z))>0$. Thus $(x \vee y) \wedge z=x \vee(y \wedge z)$.

We now turn to the direct product of fuzzy lattices.

Definition 3.14. Let (P, A) and (Q, B) be fuzzy posets. The direct product $P Q$ of P and Q is defined by $(P Q, A \times B)$, where $A \times B$: $P Q \rightarrow[0,1]$ is a fuzzy relation defined by $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)=$ $\min \left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right]$.

Theorem 3.15. Let (P, A) and (Q, B) be fuzzy lattices. The the direct product $(P Q, A \times B)$ of (P, A) and (Q, B) is a fuzzy lattice.

Proof. Let $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$. Then $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1}, q_{1}\right)\right)=$ $\min \left[A\left(p_{1}, p_{1}\right), B\left(q_{1}, q_{1}\right)\right]=1$. Suppose $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)>0$ and $(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1}, q_{1}\right)\right)>0$. Then min $\left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right]>0$ and $\min \left[A\left(p_{2}, p_{1}\right), B\left(q_{2}, q_{1}\right)\right]>0$. That is, $A\left(p_{1}, p_{2}\right)>0, A\left(p_{2}, p_{1}\right)>0$, $B\left(q_{1}, q_{2}\right)>0$, and $B\left(q_{2}, q_{1}\right)>0$. Thus $p_{1}=p_{2}$ and $q_{1}=q_{2}$, that is,

$$
\begin{aligned}
& \left(p_{1}, q_{1}\right)=\left(p_{2}, q_{2}\right) \\
& \begin{aligned}
(A & \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)=\min \left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right] \\
\quad & \geq \min \left[\sup _{p \in P} \min \left(A\left(p_{1}, p\right), A\left(p, p_{2}\right)\right), \sup \min \left(B\left(q_{1}, q\right), B\left(q, q_{2}\right)\right)\right] \\
\quad & \geq \sup _{(p, q) \in P Q} \min \left[\min \left(A\left(p_{1}, p\right), A\left(p, p_{2}\right)\right), \min \left(B\left(q_{1}, q\right), B\left(q, q_{2}\right)\right)\right] \\
\quad & =\sup _{(p, q) \in P Q} \min \left[A\left(p_{1}, p\right), B\left(q_{1}, q\right), A\left(p, p_{2}\right), B\left(q, q_{2}\right)\right] \\
& =\sup _{(p, q) \in P Q} \min \left[\min \left(A\left(p_{1}, p\right), B\left(q_{1}, q\right)\right), \min \left(A\left(p, p_{2}\right), B\left(q, q_{2}\right)\right)\right] \\
& =\sup _{(p, q) \in P Q} \min \left[(A \times B)\left(\left(p_{1}, q_{1}\right),(p, q)\right),(A \times B)\left((p, q),\left(p_{2}, q_{2}\right)\right)\right]
\end{aligned}
\end{aligned}
$$

Thus $P Q$ is a fuzzy partial order relation.
Let $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$. Then $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)=$ $\min \left[A\left(p_{1}, p_{1} \vee p_{2}\right), B\left(q_{1}, q_{1} \vee q_{2}\right)\right]>0$ by (1) of Proposition 3.3. Similarly $(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)>0$. Thus $\left(p_{1} \vee p_{2}, q_{1} \vee\right.$ $\left.q_{2}\right)$ is an upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Let (s, t) be an upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Then $(A \times B)\left(\left(p_{1}, q_{1}\right),(s, t)\right)>0$ and $(A \times B)\left(\left(p_{2}, q_{2}\right),(s, t)\right)>0$. That is, min $\left[A\left(p_{1}, s\right), B\left(q_{1}, t\right)\right]>0$ and min $\left[A\left(p_{2}, s\right), B\left(q_{2}, t\right)\right]>0$. Since $A\left(p_{1}, s\right)>0$ and $A\left(p_{2}, s\right)>$ $0, A\left(p_{1} \vee p_{2}, s\right)>0$ by (2) of Proposition 3.3. Since $B\left(q_{1}, t\right)>0$ and $B\left(q_{2}, t\right)>0, B\left(q_{1} \vee q_{2}, t\right)>0$ by (2) of Proposition 3.3. Thus $(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right)=\min \left[A\left(p_{1} \vee p_{2}, s\right), B\left(q_{1} \vee q_{2}, t\right)\right]>0$. That is, $\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)$ is the least upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. That is, $\left(p_{1}, q_{1}\right) \vee\left(p_{2}, q_{2}\right)=\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)$. Similarly we may show $\left(p_{1}, q_{1}\right) \wedge\left(p_{2}, q_{2}\right)=\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)$. Hence $(P Q, A \times B)$ is a fuzzy lattice.

References

[1] N. Ajmal and K. V. Thomas, Fuzzy lattices, Information sciences 79 (1994), 271-291.
[2] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
[3] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38-48.
[4] B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy sets and systems 35 (1990), 231-240.
[5] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Department of Mathematics
Seoul Women's University
126 Kongnung 2-Dong, Nowon-Gu
Seoul 139-774, South Korea
E-mail: ihchon@swu.ac.kr

[^0]: Received August 14, 2009. Revised October 21, 2009.
 2000 Mathematics Subject Classification: 06B99.
 Key words and phrases: fuzzy partial order relation, fuzzy lattice.
 This work was supported by a research grant from Seoul Women's University (2008).

