Korean J. Math. 17 (2009), No. 4, pp. 361-374

FUZZY PARTIAL ORDER
RELATIONS AND FUZZY LATTICES

INHEUNG CHON

ABSTRACT. We characterize a fuzzy partial order relation using its
level set, find sufficient conditions for the image of a fuzzy partial
order relation to be a fuzzy partial order relation, and find sufficient
conditions for the inverse image of a fuzzy partial order relation to
be a fuzzy partial order relation. Also we define a fuzzy lattice as
fuzzy relations, characterize a fuzzy lattice using its level set, show
that a fuzzy totally ordered set is a distributive fuzzy lattice, and
show that the direct product of two fuzzy lattices is a fuzzy lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([5]) and
this concept was adapted by Goguen ([2]) and Sanchez ([3]) to define
and study fuzzy relations. Yuan and Wu ([4]) introduced the concepts
of fuzzy sublattices and fuzzy ideals of a lattice. Ajmal and Thomas
([1]) defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy
sublattices. As a continuation of these studies, we define a fuzzy lattice
as a fuzzy relation and work on fuzzy posets and fuzzy lattices in this
note.

In section 2, we characterize a fuzzy partial order relation using
its level set, find sufficient conditions for the image of a fuzzy partial
order relation to be a fuzzy partial order relation, and find sufficient
conditions for the inverse image of a fuzzy partial order relation to be
a fuzzy partial order relation. In section 3, we define a fuzzy lattice
as a fuzzy relation, develop some basic properties of fuzzy lattices,
characterize a fuzzy lattice using its level set, show that a fuzzy totally

Received August 14, 2009. Revised October 21, 2009.
2000 Mathematics Subject Classification: 06B99.
Key words and phrases: fuzzy partial order relation, fuzzy lattice.

This work was supported by a research grant from Seoul Women’s University
(2008).



362 Inheung Chon

ordered set is a distributive fuzzy lattice, and show that the direct
product of two fuzzy lattices is a fuzzy lattice.

2. Fuzzy partial order relations

In this section we give some definitions and develop some properties
of fuzzy partial order relations.

DEFINITION 2.1. Let X be a set. A function A : X x X — [0, 1]
is called a fuzzy relation in X. The fuzzy relation A in X is re-
flezive iff A(z,x) = 1 for all x € X, A is transitive iff A(x,z) >

sup min(A(z,y), A(y,z)), and A is antisymmetric iff A(z,y) > 0 and
yeX

A(y,x) > 0 implies x = y. A fuzzy relation A is a fuzzy partial order
relation if A is reflexive, antisymmetric, and transitive. A fuzzy par-
tial order relation A is a fuzzy total order relation iff A(x,y) > 0 or
A(y,z) > 0 for all z,y € X. If A is a fuzzy partial order relation in
a set X, then (X, A) is called a fuzzy partially ordered set or a fuzzy
poset. If B is a fuzzy total order relation in a set X, then (X, B) is
called a fuzzy totally ordered set or a fuzzy chain.

PROPOSITION 2.2. Let (X, A) be a fuzzy poset (or chain) and' Y C
X. If B = Alyxy, then (Y,B) is a fuzzy poset (or chain), where
B = Ayyy.

Proof. Straightforward. OJ

If A is a fuzzy relation on a set X, then the fuzzy relation A=! :
X x X — [0,1] defined by A=Y(z,y) = A(y, z) is called a converse of
A. Note that the converse of any fuzzy partial order relation is itself a
fuzzy partial order relation.

PROPOSITION 2.3. Let {A; : i € I} be a collection of fuzzy partial

order relations in a set X. Then (X, (| A;) is a fuzzy poset.
icl

Proof. Tt is obvious that [ A; is reflexive and antisymmetric.
il
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ﬂ A1<CU, Z) = mln Az(xa Z) > InlIl sSup mln[Az ($7 y)a Az(yv Z)]
el iel el yex
> sup min min[A4;(z,y), A;(y, 2)]
= sup min[min A;(z, ), min A;(y, 2)]
= sup min[((") A)) (2, y), (1) A)(y, 2)].

yex iel iel
Thus (X, (i, Ai) is a fuzzy poset in X. OJ

However, it is easy to see that for fuzzy partial order relations A
and B in a set X, (X, AU B) is not necessarily a fuzzy poset.

We define the level set B, = {(z,y) € X x X : B(z,y) > p} of a
fuzzy relation B in a set X and characterize a relationship between a
fuzzy partial order relation and its level set.

PROPOSITION 2.4. Let B : X x X — [0,1] be a fuzzy relation and
let B, = {(z,y) € X x X : B(x,y) > p}. Then B is a fuzzy partial
order relation iff the level set B), is a partial order relation in X x X
for all p such that 0 < p < 1.

Proof. (=) Let B be a fuzzy partial order relation. Since B(z,z) =
1 for all z € X, (z,2) € B, for all p such that 0 < p < 1. Suppose
(z,y) € Bp and (y,x) € Bp. Then B(z,y) > p > 0 and B(y,x) > p >
0, and hence x = y for all p such that 0 < p < 1. Suppose (z,y) € B,
and (y,z) € Bp. Then B(x,y) > p and B(y, z) > p. Since B(x,z) >
sup min [B(x,r), B(r,z)], B(x,z) > min(B(x,y), B(y,z)) > p, that
reX
is, (z, %) € By for all p such that 0 <p < 1.
(<) Let B, be a partial order relation for all p such that 0 < p < 1.
Then (x,z) € B, for all p such that 0 < p < 1. Thus (x,z) € By,
that is, B(z,z) = 1. Suppose B(z,y) > 0 and B(y,z) > 0. Then
B(z,y) > v > 0 for some v € R and B(y,x) > w > 0 for some w € R.
Let v = min(v,w). Then B(z,y) > v > 0 and B(y,z) > u > 0.
Thus (x,y), (y,x) € By,. Since B, is antisymmetric, z = y. Suppose
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(,vy),(y,2) € Bp. Since B, is transitive, (z,z) € B,. That is, if
B(z,y) > p and B(y, z) > p, then B(x,z) > p. Thus

B(x,z) > sup min(B(z,r), B(r, 2)).
reX

O

We find sufficient conditions for the image of a fuzzy partial order
relation in a set to be a fuzzy partial order relation and find sufficient
conditions for the inverse image of a fuzzy partial order relation in a
set to be a fuzzy partial order relation.

DEFINITION 2.5. Let X and Y besetsand let f: X x X - Y xY
be a function. Let B be a fuzzy relation in Y. Then f~1(B) is a fuzzy
relation in X defined by f~!(B)(z,y) = B(f(z,y)). Let A be a fuzzy
relation in X. Then f(A) is a fuzzy relation in Y defined by

sup A(a,b), if f~1(p,q) #0
FA)pq) = 4 @D
0, if f=4(p,q) =0.

THEOREM 2.6. Let X and Y be sets and let B be a fuzzy partial
order relation in Y. Let ¢ : X x X — Y XY be a map such that

(1) ¢1(x,x) = ¢po(x,z) for all x € X,
(2) ¢1(x,y) = ¢1(x, 2) for all = y,zGX
(3) @2(p,q) = ¢p2(r,q) for all p,q,r € X,
(4) p s&é q ;I)nphes 61(p,q) # 61(¢,p) (or p # q implies ¢2(p,q) #
P2

where ¢(z,y) = (¢1(z,y), ¢2(z,y)). Then (X, ¢~'(B)) is a fuzzy
poset.

Proof. Since ¢1(z,x) = ¢pa(z, x),

(6~ (B))(z,2) = B(¢(z,2)) = B(¢1(z, ), $2(z,2)) = 1

for all x € X. By (1), (2), and (3) of our hypothesis, ¢1(z,y) =
(bl(a:vx) = ¢2(.%’,£L') = ¢2(yax) for all x,y € X.
Suppose (¢~ (B))(z,y) > 0 and (¢~'(B))(y, z) > 0.
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Then
B((ﬁ(d),@/)) = B((bl(x?y)a ¢2($7y)) >0

and
B(¢(y,x)) = B(¢1(y, x), d2(y, ) > 0.

Since ¢1(z,y) = ¢2(y, x) for all z,y € X,
B(¢1(I7y)7¢2('xay)) >0

and

B(¢2(x,y), ¢1(x,y)) > 0.

Since B is antisymmetric, ¢1(x,y) = ¢2($7y) = ¢1(y7x) = ¢2(y,$)~
By (4) of our hypothesis, * = y. Thus ¢~!(B) is antisymmetric.

(671 (B))(z,2) = B(é(z,2)) = B(d1(x, 2), ¢a(z, 2))
> Sggmin[3(¢l(xaz)v y)vB( ,¢2($,Z>)].
Since ¢1($7y) = le(m?Z) and ¢2(p7 Q) = ¢2(T7 Q) by (3) and (4) of
our hypothesis,

(61 (B))(@, 2) 2 sup min[B(¢1(x,1), y), B(y, ¢2(t,2))]

> ?g)l? mil’l[B(¢1 (iE, t)v ¢2(x7 t))v B((ﬁz(il?, t)? ¢2(t’ Z))]

Since ¢1(x,y) = ¢2(y,x) for all z, y € X,

(6~ 1(B)(x, 2) = supmin[B(¢1 (2, 1), d2(x, 1)), B(d1(t, x), $a(t, 2))]

tex
Since ¢1(t,z) = ¢1(t, z) by (2) of our hypothesis,

(¢~1(B))(, 2) = sup min[B(¢(z, 1)), B(4(t, 2))]

teX

= sup min[(¢~ ' (B))(w, 1), (6~ (B))(t, 2)]-

teX
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THEOREM 2.7. Let X and Y be sets and Let A be a fuzzy partial
order relation in X. Let ¢ : X x X — Y XY be a map such that

(1) for each y € Y, there exists x € X such that ¢(x,x) = (y,y),
(2) for each x,z € X, there exists y € Y such that ¢(z,z) = (y,y).

Then (Y, ¢(A)) is a fuzzy poset.
Proof. By (1) of our hypothesis,

(P(A)(y,y) =  sup  A(p, q) =1

P,9)€P~1(y:y)
for all y € Y.
If p # q, then ¢~ 1(p,q) = 0 by (2) of our hypothesis, and hence
(p(A)(p,g) =  sup  A(s, t)=0.
(s,t)€0~1(p,q)

By the contrapositive law, (¢(A))(p,q) > 0 implies p = ¢. Thus

(¢(A4))(p,q) > 0 and (¢(A))(q,p) > 0 implies p = g. That is, ¢(A)
is antisymmetric. If x = z,

(p(A)(z,2) =  sup  A(s,t) =1
(s.)€ 1 (x.2)

and hence

(#(A)) (2, z) = sup min[($(A))(z,y), (#(A))(y,2)]-

yeX

Suppose x # z. Thenx Zyor z #y forally e Y. If z #£ y,

(p(A)(z,y)=  sup  A(s,t)=0
(S’t)€¢_1 (J?,y)

by (2) of our hypothesis. If y # z,
(6(A)(y, 2) = sup (s,1) € ¢~ (y, 2) A(s,t) = 0.
Thus (¢(A))(z,y) =0 or (¢(A))(y, 2) for all y € Y. That is,

sup min[(¢(A))(z,y), (#(A))(y,2)] = 0.

yey

Hence

(¢(A)) (2, 2) = supy € Y min[(¢(A))(z,y), (6(A))(y, 2)]-
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3. Fuzzy lattices

In this section, we define a fuzzy lattice as a fuzzy partial order
relation and develop some properties of fuzzy lattices.

DEFINITION 3.1. Let (X, A) be a fuzzy poset and let B C X. An
element u € X is said to be an upper bound for a subset B iff A(b,u) >0
for all b € B. An upper bound uq for B is the least upper bound of B
iff A(ug,u) > 0 for every upper bound u for B. An element v € X is
said to be a lower bound for a subset B iff A(v,b) >0 for all b€ B. A
lower bound vy for B is the greatest lower bound of B iff A(v,vy) > 0
for every lower bound v for B.

We denote the least upper bound of the set {x,y} by = V y and
denote the greatest lower bound of the set {z,y} by x A y.

DEFINITION 3.2. Let (X, A) be a fuzzy poset. (X,A) is a fuzzy
lattice iff x V y and x A y exist for all x,y € X.

Example. Let X = {z,y,z} and let A: X x X — [0,1] be a fuzzy
relation such that A(x,z) = A(y,y) = A(z,2) =1, A(z,y) = A(z,2) =
Ay, z) =0, A(y,z) = 0.5, A(z,x) = 0.3, and A(z,y) = 0.2. Then it is
easily checked that A is a fuzzy partial order relation. Also z Vy = z,
xVz=z,yVz=y,zANy=y,xANz=z and y Az =z Thus (X, A)
is a fuzzy lattice.

PROPOSITION 3.3. Let (X, A) be a fuzzy lattice and let x,y,z € X.
Then

(x,xVy) >0, A(y,zVy) >0, A(xAy,z) > 0, A(xAy,y) > 0.
(x,2z) >0 and A(y,z) > 0 implies A(z V y,z) > 0.

(z,2) > 0 and A(z,y) > 0 implies A(z,x Ay) > 0.

(x,y) >0ifftVy=y.

(x,y) >0 iff t Ny = x.

A(y,z) > 0, then A(x Ay, xAz) >0 and A(xVy, xVz)>0.

SN

Proof. (1), (2), and (3) are Straightforward.
(4) Suppose A(zx,y) > 0. Since A(y,y) =1 > 0, A(x V y,y) > 0 by
(2). Since A(y,zVy) > 0Dby (1), x Vy =y by the antisymmetry of A.
Conversely, suppose z Vy = y. Then A(x,y) = A(z,zVy) >0 by (1).
(5) The proof is similar to that of (4).
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(6) Suppose A(y, z) > 0. Then

A(x ANy, z) > sup min[A(xz Ay, p), A(p, 2)]
peX

> min [A(z Ay, y), Ay, 2)] > 0.

Since A(z Ay, ) > 0 by (1), z Ay is a lower bound of {x,z}. Since
x A z is the greatest lower bound of {z,z}, A(x Ay, z Az) > 0.

A(y, zV z) > sup min[A(y, p), A(p,z V z)]
peX

> min [A(y, 2),A(z,zV z)] > 0.
Since A(xz, xV z) >0by (1), A(zx Vy,xV z) >0 by (2). O

PROPOSITION 3.4. Let (X, A) be a fuzzy lattice and let x,y,z € X.
Then

(1) xVez=z,x ANz ==

(2) zVy=yVzx,zANy=yAx.

(B) (xVy)Vz=zV(yVz), @Ay Az=zA(yAz).
(4) (zVy)hNz==xz, (zANy)Vze=ur.

Proof. (1) and (2) are straightforward.
(3) Since A(z,z V (yV z)) > 0 and

Aly,zV (yV2)) > sup min[A(y, k), A(k,z V (y V 2))]

> min[A(y,y V 2), A(y V z,2 V (y V 2))] > 0
Az Vy,xz V (yVz)) >0 by (2) of Proposition 3.3. Since

A(z,zV (yV z)) > 21612 min[A(z, k), A(k,z V (y V 2))]

> min[A(z,y V 2), A(y V z,z V (y V 2))] > 0,

A((zVy)Vz,xV (yVz)) >0 by (2) of Proposition 3.3. Similarly we
may show A(z V (yV 2),(z Vy)Vz) > 0. By the antisymmetry of A,
(xVy)Vz=uazV(yVz). Similarly we may show (zAy)Az=2xA(yAz).
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(4) Let B ={xVy,x}. Since A(z,xVy)>0and A(z,z) =1>0, z is
a lower bound of B. If z is a lower bound of B, then A(z,z) > 0. Thus
x is the greatest lower bound of B. Hence (z V y) A x = x. Similarly
we may show (z Ay)Vx = x. O

We now turn to a characterization of the relationship between a
fuzzy lattice and its level set.

PROPOSITION 3.5. Let B : X x X — [0,1] be a fuzzy relation and
let B, = {(z,y) € X x X : B(z,y) > p}. If (X,B,) is a lattice for
every p with 0 < p < 1, then (X, B) is a fuzzy lattice.

Proof. Let (X, B,) be a lattice for every p with 0 < p < 1. Then
(X, B) is a fuzzy poset by Proposition 2.4. For x,y € X, there ex-
ists r € X such that (z,r) € B,, (y,r) € By, and (r,u) € B, for
every upper bound u for {x,y}. That is, there exists » € X such that
B(x,r) >p >0, B(y,r) >p >0, and B(r,u) > p > 0 for every upper
bound u for {x,y}. Thus there exists a least upper bound r € X of
{z,y}. Similarly we may show that there exists a greatest lower bound
ce€ X of {z,y}. Hence (X, B) is a fuzzy lattice. O

PROPOSITION 3.6. Let B : X x X — [0,1] be a fuzzy relation and
let B, = {(z,y) € X x X : B(z,y) > p}. If (X, B) is a fuzzy lattice,
then (X, B)) is a lattice for some p > 0.

Proof. Let (X, B) be a fuzzy lattice. Then B, is a partial order
relation for every p with 0 < p < 1 by Proposition 2.4. Let z,y € X
and let U be the set of all upper bounds for {x, y} and L be the set of all
lower bounds for {z,y}. Then there exists r € X such that B(z,r) > 0,
B(y,r) > 0, and B(r,u) > 0 for all u € U and there exists ¢ € X such
that B(c,z) > 0, B(c,y) > 0, and B(l,¢) > 0 for all I € L. Let
p = mln[B(xv T)a B(ya T)? B(T‘, U), B(Cv l‘), B(Ca y)7 B(l7 C)] > 0. Then
there exists r € X such that B(z,r) > p > 0, B(y,r) > p > 0,
and B(r,u) > p > 0 for all w € U and there exists ¢ € X such that
B(c,xz) > p >0, B(c,y) > p >0, and B(l,c) > p > 0 for all | € L.
That is, there exists » € X such that (z,7) € By, (y,r) € B, and
(r,u) € By for all uw € U and there exists ¢ € X such that (¢, z) € By,
(c,y) € By, and (l,c¢) € By, for all [ € L. Thus there exists a least
upper bound r € X of {z,y} and there exists a greatest lower bound
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c € X of {z,y} for some p > 0. Hence (X, B,) is a lattice for some
p > 0. ]

We now turn to the characterizations of distributive fuzzy lattices
and modular fuzzy lattices.

PROPOSITION 3.7. (Distributive inequalities) Let (X, A) be a fuzzy
lattice and let x,y,z € X. Then A((x Ay)V (zAz), 2N (yVz)) >0
and A(xV (yNz), (xVy A(zVz))>0.

Proof. Since A(zAy, y) > 0and A(y, yVvVz) >0, A(xAy, yVz) > 0.
Since A(zAy, x) > 0, A(z Ay, xA(yVz)) > 0 by (3) of Proposition 3.3.
Since A(z Az, z) >0and A(z, yVz) >0, A(x Az, yVz)>0. Since
A(xNz, ) >0, A(zAz, zA(yVz)) > 0 by (3) of Proposition 3.3. Thus
xA(yVz) is an upper bound of {x Ay, zAz}. Since (xAy)V(zAz) is the
least upper bound of {x Ay, Az}, A((zAy)V(xAz), xA(yVz)) > 0.
Similarly, we may prove A(z V (y A z), (xVy)A(zVz))>D0. O

DEFINITION 3.8. Let (X, A) be a fuzzy lattice. (X, A) is distributive
iffeAn(yvz)=(xAy)V(zAz)and (zVy)A(xzVz)=xV(yAz).

From the distributive inequalities, (X, A) is distributive iff A(zx A
(yVz), (xAy)V(zAz))>0and A(zVy)A(zVz), zV(yAz)) > 0.

PROPOSITION 3.9. Let (X, A) be a fuzzy lattice and let z,y, z € X.
Then

(xAy)V(zAz)=xA(yVz)<= (xVy A(xVz)=zV(yAz).

Proof. (=) By (4) of Proposition 3.4, (zVy) Az = x. Thus A((xV
yYN(@V2), zV(ynz) =AlzVy) Az]V[@Vy)Az], 2V (yAz)) =
A(zVzA(zVy)], 2V (yAz)) =AlxV[(zAx)V(2AYy)], zV(yAz))
A(fle vV (zANx)]V (zAy), xV (y Az)). Since z V (z Ax) = x by (4)
Proposition 3.4, A((zVy)A(zVz), xV(yAz)) = A(xV(zAy), 2V (yA
z)) = A(xV(yAz), zV(yAz)). Thus A((xVy)A(zVz), zV(yAz)) > 0.
Similarly we may show A(x V (y A z), (xVy)A(xVz))>0. Since A
is antisymmetric, (xt Vy) A (xVz) =2V (y A 2).

(<) A((zAy)V(zAz2), A (yVz)) = A([(xAy) V] A[(zAy)Vz], ©A(yY
z)) = A2V (zAy)], e\ (yVz)) = A(eA[(zVE)A(2Vy)], 2A(yVz)) =

©)
=
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A(flr N(zV)AN(zVYy), 2A(yVz)=AlxA(zVy), A (yVz)) =
Az AN(yVz), xA(yVz)). Thus A((zAy)V(zAz), cA(yVz))>0.
Similarly we may show A(x A (yV 2), (x Ay)V (x Az)) > 0. Since A
is antisymmetric, (t Ay)V(z Az) =z A (yV 2). O

THEOREM 3.10. Let (X, A) be a fuzzy totally ordered set. Then
(X, A) is a distributive fuzzy lattice.

Proof. Let (X, A) be a fuzzy totally ordered set and let x,y € X.
Then A(x,y) > 0 or A(y,x) > 0. Suppose A(z,y) > 0. Since A(y,y) =
1> 0, yis an upper bound of {z, y}. Let u be an upper bound of {z, y}.
Then A(y,u) > 0. Thus y is the least upper bound of {z,y}. Since
A(z,y) > 0 and A(xz,z) =1 > 0, z is a lower bound of {z,y}. Let v
be a lower bound of {z,y}. Then A(v,z) > 0. Thus z is the greatest
lower bound of {z,y}. In case of A(y,x) > 0, we may show that z is
the least upper bound of {x,y} and y is the greatest lower bound of
{z,y}. Hence (X, A) is a fuzzy lattice.

(i) First, we consider the case of A(x,y) > 0.

Suppose A(x,y) > 0. Then = Ay = = by (5) of Proposition 3.3. Since

A(zA(yVz), ) > 0by (1) of Proposition 3.3, A(zA(yVz), zAy) > 0.

By (1) of Proposition 3.3, A(xAy, (xAy)V(xAz)) > 0. A(xA(yVz), (xA

y)V(rAz))>sup min [A(z A (yV z), k), A(k,(xANy)V (zA2))] >
keX

min [A(z A (yV 2), x Ay), Alx ANy, (x Ay)V (x Az)] > 0. By the

distributive inequalities, z A (yV z) = (z Ay) V (z A z). By Proposition

39, (xVy)AN(zVz)=xV(yAz). Thus (X, A) is distributive.

(ii) We consider the case of A(y,z) > 0.

Suppose A(y,z) > 0. Then =z Vy = z by (4) of Proposition 3.3.

Thus A((x Vy) A (x V 2), ) = Alx A (x V 2), ) > 0. By (1) of

Proposition 3.3, A(x, xV(yAz)) > 0. A((zVy)A(zVz), xV(yAz)) >

sup min [A((zVy)A(zVz2), k), Ak, xV (yAz))] > min [A((zVy)A

keX

(xV2), z), Az, =V (y A z))] > 0. By the distributive inequalities,

(xVy)AN(zVz)=uaxV(yAz). By Proposition 3.9, x A (y V z) =

(x ANy)V (x A z). Thus (X, A) is distributive. O

PROPOSITION 3.11. (Modular inequality) Let (X, A) be a fuzzy lat-
tice and let
x,y,z € X. Then A(x,z) > 0 implies A(zV (y A z), (xVy)Az)>0.
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Proof. Since A(z, zVy) > 0and A(z,z) >0, A(x, (xVy)Az) > 0.
Since A(y Az, y) > 0and A(y, zVy) >0, A(ly Az, zVy)>0. Since
AlyANz, z) >0, A(y Nz, (xVy)Az)>0Dby (3) of Proposition 3.3.
Thus A(zV (y A 2), (xVy)Az)>0. O

DEFINITION 3.12. A fuzzy lattice (X, A) is modular iff A(z,z) >0
implies zV (y A z) = (x Vy) Az for z,y,z € X.

By the modular inequality, a fuzzy lattice (X, A) is modular iff
A(z,z) > 0 implies A((xVy) Az, xV (yAz))>0forz,y ze X.

PROPOSITION 3.13. Let (X, A) be a distributive fuzzy lattice. Then
(X, A) is modular.

Proof. Since (X, A) is distributive, (xVy)Az = (xAz)V(yAz). Thus
A((zVy)Az,xV(yNz)) = A((zA2)V(yAz), 2V (yAz)). Since A(z, z) > 0,
x Az =z by (5) of Proposition 3.3. Thus A((zVy)Az,xV(yAz)) =
A(xzV (yAz),zV(yAz))>0. Thus (zVy)Az=xV (yAz). O

We now turn to the direct product of fuzzy lattices.

DEFINITION 3.14. Let (P, A) and (@, B) be fuzzy posets. The direct
product PQ of P and @ is defined by (PQ,A x B), where A X B :
PQ — [0,1] is a fuzzy relation defined by (A x B)((p1,q1), (p2,q2)) =

min [A(p1, p2), B(q1, q2))-

THEOREM 3.15. Let (P, A) and (Q, B) be fuzzy lattices. The the
direct product (PQ,A x B) of (P, A) and (Q, B) is a fuzzy lattice.

Proof. Let (p1,q1), (P2, ¢2) € PQ. Then (A x B)((p1,q1), (p1,q1)) =
min[A(p1,p1), B(q1,q1)] = 1. Suppose (A x B)((p1,q1), (p2,42)) > 0
and (A x B)((p2, ¢2), (p1,q1)) > 0. Then min [A(p1,p2), B(q1,q2)] > 0
and min[A(p2;p1)aB(Q27Q1)] > 0. That iS? A(p17p2) > 07 A(p27p1) > 07
B(q1,q2) > 0, and B(q2,q1) > 0. Thus p; = p2 and ¢; = g2, that is,
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(p1,q1) = (pQ,Q2)'

(A x B)((p1,q1), (p2,42)) = min[A(p1,p2), B(g1,¢2)]

> min[sup min(A(p1,p), A(p, p2)), sup min(B(q1,q), B(q,¢2))]
peP qeQ

> sup min[min(A(p1,p), A(p,p2)), min(B(q1,q), B(q,q2))]
(p,9)€EPQ

= sup min[A(p1,p), B(q1,q), A(p,p2), B(q, ¢2)]
(p,9)EPQ

= sup min[min(A(p1,p), B(q1,q)), min(A(p,p2), B(q,q2))]
(p,q)€PQ

= sup min[(A x B)((p1,q1), (p, ), (A x B)((p, q), (P2, 42))]-
(p,9)EPQ

Thus PQ is a fuzzy partial order relation.

Let (p1,q1), (p2,q2) € PQ. Then (A x B)((p1,q1), (p1 V2, q1 V q2)) =
min [A(p1,p1 Vp2), B(gi,q1V g2)] > 0 by (1) of Proposition 3.3. Sim-
ilarly (A x B)((p2,q2), (p1 V p2,q1 V g2)) > 0. Thus (p1 V p2,q1 V
g2) is an upper bound of {(p1,q1), (p2,92)}. Let (s,t) be an upper
bound of {(p1,q1), (p2,q2)}. Then (A x B)((p1,q1),(s,t)) > 0 and
(A x B)((p2,42),(s,t)) > 0. That is, min [A(p1,s),B(q1,t)] > 0
and min [A(pe,s), B(qa2,t)] > 0. Since A(pi,s) > 0 and A(pa,s) >
0, A(p1 V pa2,s) > 0 by (2) of Proposition 3.3. Since B(q,t) > 0
and B(g2,t) > 0, B(q1 V ¢q2,t) > 0 by (2) of Proposition 3.3. Thus
(AxB)((p1Vp2,q1Vq2),(s,t)) = min [A(p1 Vp2,s), B(q1Vqz,1t)] > 0.
That is, (p1Vp2,q1 V gz) is the least upper bound of {(p1,q1), (p2,q2)}-
That is, (p1,q1) V (p2,q2) = (p1 V p2,q1 V q2). Similarly we may show
(p1,q1) A (p2,q2) = (p1 A p2,q1 A q2). Hence (PQ, A x B) is a fuzzy
lattice. 0
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