Korean J. Math. 17 (2009), No. 4, pp. 341–347

SOME RESULTS ON π -REGULARITY AND π S-UNITALITY

Yong Uk Cho

ABSTRACT. In this paper, we begin with to show the characterization of regularity and S-unitality in near-rings, also consider their application.

Next, we introduce more general concepts of regularity and Sunitality, that is, π -regularity and π S-unitality and then give some examples in near-rings, also investigate their characterization and properties.

1. Introduction

The concept of Von Neumann regularity of near-rings have been studied by many authors Beidleman, Choudhari, Goyal, Heatherly, Hongan, Ligh, Mason and Murty. Their main results are suggested in the book of Pilz [12].

The Von Neumann regularity of rings and its generalization were studied by Fisher, Snider, Hirano, Tominaga, Savaga, Li, Schein and Ohori. In 1985, Ohori investigated the characterization of π -regularity and strong π -regularity of rings.

A near-ring R is an algebraic system $(R, +, \cdot)$ with two binary operations + and \cdot such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, \cdot) is a semigroup and (a+b)c = ac+bc for all a, b, c in R. If R has a unity 1, then R is called *unitary*. A near-ring Rwith the extra axiom a0 = 0 for all $a \in R$ is said to be zero symmetric. An element d in R is called *distributive* if d(a+b) = da + db for all aand b in R.

We will use the following notations: Given a near-ring $R, R_0 = \{a \in R \mid a0 = 0\}$ which is called the *zero symmetric part* of $R, R_c = \{a \in R \mid a0 = 0\}$

Received March 26, 2009. Revised November 30, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 16Y30.

Key words and phrases: regularity, S-unitality, π -regularity and π S-unitality.

Yong Uk Cho

 $R \mid a0 = a$ which is called the *constant part* of R. The set of all distributive elements in R is denoted by R_d .

Obviously, we see that R_0 and R_c are subnear-rings of R, but R_d is a semigroup under multiplication. Clearly, near-ring R is zero symmetric, in case $R = R_0$ also, in case $R = R_c$, R is called a *constant* near-ring and in case $R = R_d$, R is called a *distributive* near-ring.

For notation and basic results, we shall refer to Pilz [12].

2. Results

For a near-ring R, an element $a \in R$ is called *nilpotent* if there exists a positive integer n such that $a^n = 0$. Also, a subset $S \subset R$ is called *nilpotent* if there exists a positive integer n such that $S^n = 0$ and $S \subset R$ is called *nil* if every element in S is nilpotent, which are introduced in [12]. Clearly, every nilpotent subset of R is nil.

A (two-sided) R-subgroup of R is a subset H of R such that (i) (H, +) is a subgroup of (R, +), (ii) $RH \subset H$ and (iii) $HR \subset H$. If H satisfies (i) and (ii) then it is called a *left R-subgroup* of R. If H satisfies (i) and (iii) then it is called a *right R-subgroup* of R. In case, (H, +) is normal in above, we say that normal R-subgroup, normal *left R-subgroup* and normal right R-subgroup instead of R-subgroup, left R-subgroup and right R-subgroup, respectively. Note that normal right R-subgroups of R are the same of right ideals of R.

Also, a subset H of R together with (i) $RH \subset H$ and (ii) $HR \subset H$ is called an R-subset of R. If this H satisfies (i) then it is called a *left* R-subset of R, and H satisfies (ii) then it is called a *right* R-subset of R.

Also, we say that R is *reduced* if R has no nonzero nilpotent elements, that is, for each a in R, $a^n = 0$, for some positive integer n implies a = 0. McCoy proved that R is reduced iff for each a in R, $a^2 = 0$ implies a = 0.

A near-ring R is called (Von Neumann) regular if for any element $a \in R$, there exists an element x in R such that a = axa. Such an element a is called *regular*.

A near-ring R is called left S-unital (resp. right S-unital) if for each a in $R, a \in Ra$ (resp. $a \in aR$), such an element a is called left S-unital (resp. right S-unital).

342

R is called *S-unital*, if R is both left *S*-unital and right *S*-unital. Every near-ring with left identity or identity is clearly left *S*-unital. Also every regular near-ring is *S*-unital.

We shall use the phrase " $\forall a \in R$, $\exists e^2 = e \in R$ " instead of "for every element a in R, there exists some element $e^2 = e$ in R" for convenience in the following.

Now, we begin with to show the characterization of regularity and S-unitality in near-rings, also consider their application.

PROPOSITION 1. Let R be a near-ring. Then R is regular if and only if R has the condition " $\forall a \in R, \exists e^2 = e \in R$ such that Ra = Re" and R is left S-unital.

Proof. Suppose that R is regular. Then for any $a \in R$, there exists $x \in R$ such that a = axa. Since xa and ax are idempotents in R, taking xa = e, $Ra = Raxa = Rae \subset Re$ and $Re = Rxa \subset Ra$. Hence Ra = Re. Obviously, R is left S-unital.

Conversely, assume that R has the given condition " $\forall a \in R, \exists e^2 = e \in R$ such that Ra = Re" and R is left S-unital. Then S-unitality implies that $a \in Ra = Re$, so that there exists $y \in R$ such that a = ye. From this condition, we see that $e = ee \in Re = Ra$, so that there exists $x \in R$ such that e = xa. Thus we obtain that a = ye = yee = yexa = axa. Consequently, R is regular.

COROLLARY 2 [1], [8]. Let R be a near-ring with identity. Then R is regular if and only if R has the condition " $\forall a \in R, \exists e^2 = e \in R$ such that Ra = Re".

The following statements are an application of Proposition 1.

PROPOSITION 3. Every regular near-ring R has no non-zero nil left R-subset.

Proof. Let R be a regular near-ring and K be a nil left R-subset of R. It suffices to show that $K = \{0\}$. Indeed, let $a \in K$. Since R is regular, R has the condition " $\exists e^2 = e \in R$ such that Ra = Re" and R is left S-unital, by Proposition 1. Since K is a left R-subset, we have that $a \in Ra \subset K$. On the other hand, since K is nil, there exists positive integer m, such that $a^m = 0$.

Yong Uk Cho

Next, from the condition $e = ee \in Re = Ra \subset K$, also there exists positive integer n, such that $e = e^n = 0$. From the above two conditions, we have $a \in R0$, so that a = r0 for some $r \in R$. Consequently, $a = r0 = (r0)^m = a^m = 0$. That is, $K = \{0\}$.

COROLLARY 4 [1]. Every regular near-ring R with identity has no non-zero nil left R-subgroup.

From now on, we introduce more general concepts of regularity and S-unitality and then give some examples in near-rings, also investigate their characterization and properties.

A near-ring R is said to be π -regular if for each element $a \in R$, there exists a positive integer n such that a^n is a regular element, that is, $a^n = a^n x a^n$, for some $x \in R$. Such an element a is called π -regular.

Every regular near-ring is π -regular, but not conversely as following examples.

EXAMPLES 5.

(1) Let $R = \{0, a, b, c\}$ be an additive Klein 4-group. This is a near-ring with the following multiplication table (p. 408 [12]):

•	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	c	b
c	0	a	b	c

This near-ring R is a zero-symmetric near-ring with identity c. Moreover, R is π -regular, but not regular. Indeed, 0 = 0a0, $a^2 = a^2ba^2$, $b^4 = b^4ab^4$, $c^2 = c^2cc^2$, but a is not a regular element.

(2) Let $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ be an additive group of integers modulo 4 and define multiplication as follows:

344

•	0	1	2	3
0	0	0	0	0
1	0	3	0	1
2	0	2	0	2
3	0	1	0	3

This near-ring R is a zero-symmetric near-ring without identity. Moreover, R is π -regular, but not regular. Indeed, 0 = 0a0, $a^2 = a^2ba^2$, $b^4 = b^4ab^4$, $c^2 = c^2cc^2$, but a is not a regular element.

Finally, we can define a general concept of left S-unitality.

A near-ring R is called left πS -unital (resp. right πS -unital) if for each a in R, there exists a positive integer n such that a^n is a S-unital element, that is, $a^n \in Ra^n$ (resp. $a^n \in a^n R$), such an element a is called left πS -unital (resp. right πS -unital).

R is called πS -unital, if *R* is both left πS -unital and right πS -unital. Also, every left S-unital (resp. right S-unital) near-ring is left πS unital (resp. right πS -unital), but not conversely as following remarks.

REMARKS 6. In Examples 5 (1), clearly, R is a left S-unital nearring. But in Examples 5 (1), R is left π S-unital, indeed, $0 = 1 \cdot 0 = 2 \cdot 0 = 3 \cdot 0 \in R0$, $1 = 3 \cdot 1 \in R1$, $2^2 = 0 = 0 \cdot 2^2 \in R2^2$ and $3 = 3 \cdot 3 \in R3$. But this near-ring R is not S-unital, because 2 is not a left S-unital element.

The statements Proposition 1 and Corollary 2 can be extended on π -regular and left π S-unital near-rings as following.

THEOREM 7. Let R be a near-ring. Then R is π -regular if and only if R has the condition " $\forall a \in R, \exists e^2 = e \in R \text{ and } \exists n \in Z^+ \text{ such that} Ra^n = Re$ ", and R is left π S-unital.

Proof. Suppose that R is π -regular. Then for any $a \in R$, there exist a positive integer n and $x \in R$ such that $a^n = a^n x a^n$. This equality implies that $a^n \in Ra^n$. Hence R is left π S-unital.

Next, since xa^n and $a^n x$ are idempotent elements in R, putting $xa^n = e$, $Ra^n = Ra^n xa^n \subset Rxa^n = Re$ and $Re = Rxa^n \subset Ra^n$. Hence $Ra^n = Re$. Yong Uk Cho

Conversely, assume that R has the given condition " $\forall a \in R, \exists e^2 = e \in R$ and $\exists n \in Z^+$ such that $Ra^n = Re$ ", and R is left π S-unital. Then the π S-unitality implies that $a^n \in Ra^n = Re$, so that there exists $y \in R$ such that $a^n = ye$(1). On the other hand, we see that $e = ee \in Re = Ra^n$, so that there exists $x \in R$ such that $e = xa^n$(2). From this two conditions (1) and (2), we obtain that $a^n = ye = yee = yexa^n = a^n xa^n$. Therefore, R is a π S-regular near-ring.

COROLLARY 8. Let R be a near-ring with identity. Then R is π -regular if and only if R has the condition " $\forall a \in R, \exists e^2 = e \in R \text{ and} \exists n \in Z^+$ such that $Ra^n = Re$ ".

REMARKS 9. Proposition 3 and Corollary 4 do not hold in π -regular near-rings. In Examples 5 (1), $\{0, a\}$ is a non-zero *R*-subgroup which is nil.

For any near-ring R, the center of R is denoted by the set

$$Z(R) = \{ x \in R \mid ax = xa, \forall a \in R \}.$$

Note that when R is distributive, that is, $R = R_d$, Z(R) is a subnearring of R. In Appendix of (pp. 421-424 [12]), we can find some distributive π -regular near-rings which are not additive abelian.

THEOREM 10. The center of a distributive π -regular near-ring is also π -regular.

Proof. Let R be a distributive π -regular near-ring, and let $a \in Z(R)$. Then $\exists x \in R$ and $\exists n \in Z^+$ such that $a^n = a^n x a^n$. From this equality, we have that $a^n = a^n x a^n = a^n x a^n x a^n$. We will show that $x a^n x \in Z(R)$. Then our claim is done. Indeed, let $t \in R$. Since $a \in Z(R)$, also $a^n \in Z(R)$. Thus we can deduce that

$$t(a^n x) = (ta^n)x = (a^n t)x = a^n(tx) = a^n xa^n(tx)$$
$$= a^n x(tx)a^n = a^n(xtx)a^n$$

and

$$(a^n x)t = (xa^n)t = x(a^n t) = x(ta^n) = xt(a^n xa^n)$$
$$= (xta^n)xa^n = a^n(xtx)a^n.$$

346

Hence $a^n x \in Z(R)$. Similarly, we can obtain that $xa^n \in Z(R)$. Thus,

$$t(xa^nx) = t(a^nxx) = (ta^nx)x = (a^nxt)x = x(a^nt)x$$

and

$$(xa^nx)t = x(a^nx)t = xt(a^nx) = x(ta^n)x = x(a^nt)x.$$

This implies that $t(xa^n x) = (xa^n x)t$, that is, $xa^n x \in Z(R)$. Hence Z(R) is π -regular.

COROLLARY 11. The center of a distributive regular near-ring is also regular.

References

- J. C. Beidleman, A note on regular near-rings, J. Indian Math. Soc. 33 (1969), 207-210.
- [2] S. C. Choudhari and A. K. Goyal, Generalized regular near-rings, Stud. Sci. Math. Hungar 14 (1982), 69-76.
- [3] S. C. Choudhari and J. L. Jat, On left bipotent near-rings, Proc. Edn. Math. Soc. 22 (1979), 99-107.
- [4] J. W. Fisher and R. L. Snider, On the Von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1) (1974), 135-144.
- [5] H. E. Heatherly, On regular near-rings, J. Indian Math. Soc. 38 (1974), 345-354.
- [6] Y. Hirano and Tominaga, Regular rings, V-rings and their generalizations, Hiroshima Math. J. 9 (1979), 137-149.
- [7] M. Hongan, Note on strongly regular near-rings, Proc. Edn Math. Soc. 29 (1986), 379-381.
- [8] S. Ligh, On regular near-rings, Math. Japon. 15 (1970), 7-13.
- [9] G. Mason, Strongly regular near-rings, Proc. Edn. Math. Soc. 23 (1980), 27-36.
- [10] G. Mason, A note on strong forms of regularity for near-rings, Indian J. of Math. 40(2) (1998), 149-153.
- [11] M. Ohori, On strongly π-regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52.
- [12] G. Pilz, *Near-rings*, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983.

Department of Mathematics Silla University Pusan 617-736, Korea *E-mail*: yucho@silla.ac.kr