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THE INTEGRATION BY PARTS FOR THE
C-INTEGRAL
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Abstract. In this paper, we define the C-integral and prove the
integration by parts formula for the C-integral.

1. Introduction and preliminaries

It is well-known [8] that the integration by parts formula is valid for
the Lebesgue, Denjoy, Perron, and Henstock integrals. In this paper, we
prove the integration by parts formula for the C-integral. Throughout
this paper, I0 = [a, b] is a compact interval in R. Let D = {(Ii, ξi)}n

i=1
be a finite collection of non-overlapping tagged intervals of I0 and let δ
be a positive function on I0. We say that D is

(a) a δ - fine McShane partition of I0 if ∪n
i=1Ii = I0, Ii ⊂ (ξi −

δ(ξi), ξi + δ(ξi)) and ξi ∈ Io for all i = 1, 2, ..., n,
(b) a δ - fine Cε−partition of I0 if it is a δ - fine McShane partition

of I0 and satisfying
n∑

i=1

dist(ξi, Ii) <
1
ε
,

where dist(ξi, Ii) = inf{|t− ξi| : t ∈ Ii}.
Given a δ−fine partition D = {(Ii, ξi)}n

i=1 we write

S(f,D) =
n∑

i=1

f(ξi)|Ii|,
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whenever f : I0 → R.

2. Properties of the C-integral

We present the definition of the C-integral.

Definition 2.1. [2] A function f : I0 → R is C-integrable if there
exists a real number A such that for each ε > 0 there is a positive
function δ(ξ) : I0 → R+ such that

|S(f,D)−A| < ε

for each δ−fine Cε-partition D = {(Ii, ξi)}n
i=1 of I0. The real number

A is called the C-integral of f on I0. and we write A =
∫
I0

f or A =
(C)

∫
I0

f .
The function f is C-integrable on the set E ⊂ I0 if the function fχE

is C-integrable on I0, we write
∫
E f =

∫
I0

fχE .

We can easily get the following two theorems.

Theorem 2.2. A function f : I0 → R is C-integrable if and only if
for each ε > 0 there is a positive function δ(ξ) : I0 → R+ such that

|S(f,D1)− S(f,D2)| < ε

for arbitrary δ-fine Cε -partitions D1 and D2 of I0.

Theorem 2.3. Let f : I0 → R. Then
(1) If f is C-integrable on I0, then f is C-integrable on every subin-

terval of I0.
(2) If f is C-integrable on each of the intervals I1 and I2, where I1

and I2 are non-overlapping and I1 ∪ I2 = I0, then f is C-integrable on
I0 and

∫
I1

f +
∫
I2

f =
∫
I0

f .

The following theorem shows that the C-integral is linear.

Theorem 2.4. Let f and g be C-integrable functions on I0. Then
(1) αf is C-integrable on I0 and

∫
I0

αf = α
∫
I0

f for each α ∈ R,

(2)f + g is C-integrable on I0 and
∫
I0

(f + g) =
∫
I0

f +
∫
I0

g.

Definition 2.5. Let F : I0 → R and let E be a subset of I0.
(a) F is said to be ACc on E if for each ε > 0 there is a constant

η > 0 and a positive function δ : I0 → R+ such that
∑

i |F (Ii)| < ε for
each δ-fine partial Cε-partition D = {(Ii, ξi)} of I0 satisfying ξi ∈ E and∑

i |Ii| < η.
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(b) F is said to be ACGc on E if E can be expressed as a countable
union of sets on each of which F is ACc.

Theorem 2.6. [13] If a function f : I0 → R C-integrable on I0 if
and only if there is an ACGc function F on I0 such that F ′ = f almost
everywhere on I0.

3. The integration by parts for the C-integral

To prove the integration by parts for the C-integral, we need the
following two theorems.

Theorem 3.1. If F is ACGc on [a, b], then F is continuous on [a, b].

Proof. Let [a, b] = ∪∞n=1En where F is ACc on each En. Let c ∈ [a, b]
and choose an index n such that c ∈ En. Let ε > 0. Since F is ACc

on En, there exist a positive number η > 0 and a positive function δ :
[a, b] → R+ such that

∑
i |F (Ii)| < ε for each δ−fine partial Cε−partition

D = {(ξi, Ii)}n
i=1 of [a, b] satisfying

∑
i |Ii| < η and ξi ∈ En. Let r =

min{δ(c), η}. Suppose that x ∈ (c − r, c + r) ∩ [a, b]. Then ([c, x], c)
(or([x, c], c)) is a δ−fine partial Cε−partition with |x − c| < η. Hence,
|F (x)− F (c)| < ε. It follows that F is continuous at c.

Theorem 3.2. If F and G are ACGc on [a, b], then FG is ACGc on
[a, b].

Proof. Since F and G are continuous on [a, b] by Theorem 3.1, there
exist real numbers M1 and M2 with M1,M2 ≥ 1 such that |F (t)| ≤ M1

and |G(t)| ≤ M2 for each t ∈ [a, b]. Since F is ACGc on [a, b], we
have [a, b] = ∪∞n=1En and F is ACc on each En. Since G is ACGc

on [a, b], we have [a, b] = ∪∞k=1Ak and G is ACc on each Ak. then
[a, b] = ∪∞n=1 ∪∞k=1 (En ∩Ak).

To show that FG is ACc on each En ∩ Ak, fix n and k. Let ε > 0.
Since F is ACc on En, there exist a constant η1 > 0 and a positive
function δ1 : [a, b] → R+ such that

n∑
i=1

|F (Ii)| <
ε

2M2

for each δ1−fine partial McShane partition {(xi, Ii)}p
i=1 of [a, b] satis-

fying
∑p

i=1 dist(xi, Ii) < 2M2
ε and

∑
i |Ii| < η1 and xi ∈ En. Since G
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is ACc on Ak, there exist a constant η2 > 0 and a positive function
δ2 : [a, b] → R+ such that

n∑
j=1

|G(Jj)| <
ε

2M1

for each δ2−fine partial McShane partition {(yj , Jj)}q
j=1 of [a, b] satis-

fying
∑q

j=1 dist(yj , Jj) < 2M1
ε and

∑
j |Jj | < η2 and yj ∈ Ak.

Let δ = min{δ1, δ2} and let η = min{η1, η2}. Let D = {(ξi, [ci, di])}m
i=1

be a δ−fine partial McShane partition satisfying
∑m

i=1 dist(ξi, [ci, di]) <
1
ε and

∑
i(di−ci) < η and ξi ∈ En∩Ak. Then, since

∑m
i=1 dist(ξi, [ci, di])

< 2M1
ε and

∑m
i=1 dist(ξi, [ci, di]) < 2M2

ε , we have
m∑

i=1

|F (di)G(di)− F (ci)G(ci)|

≤
m∑

i=1

|F (di)G(di)− F (ci)G(di)|+
m∑

i=1

|F (ci)G(di)− F (ci)G(ci)|

=
m∑

i=1

|G(di)||F (di)− F (ci)|+
m∑

i=1

|F (ci)||G(di)−G(ci)|

≤ M2

m∑
i=1

|F (di)− F (ci)|+ M1

m∑
i=1

|G(di)−G(ci)|

< M2
ε

2M2
+ M1

ε

2M1
= ε.

Hence, FG is ACc on En ∩Ak.

Theorem 3.3. Let f : [a, b] → R be C−integrable on [a, b] and let
F (x) = (C)

∫ x
a f for each x ∈ [a, b]. If G : [a, b] → R is AC on [a, b],

then fG is C−integrable on [a, b] and

(C)
∫ b

a
fG = F (b)G(b)− (L)

∫ b

a
FG′.

Proof. Since F is ACGc on [a, b] and the AC function G is ACc on
[a, b], FG is ACGc on [a, b] by Theorem 3.1. Hence, (FG)′ is C−integrable
on [a, b]. Since F is bounded and measurable, FG′ is Lebesgue integrable
on [a, b]. Since fG = (FG)′ − FG′ almost everywhere on [a, b], fG is
C−integrable on [a, b] and
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(C)
∫ b

a
fG = (C)

∫ b

a
(FG)′ − (L)

∫ b

a
FG′

= F (b)G(b)− (L)
∫ b

a
FG′.

Corollary 3.4. Let f : [a, b] → R be C−integrable on [a, b] and let
F (x) = (C)

∫ x
a f for each x ∈ [a, b]. If G : [a, b] → R is AC on [a, b],

then fG is C−integrable on [a, b] and

(C)
∫ b

a
fG = F (b)G(b)−

∫ b

a
FdG,

where the second integral is the Riemann−Stieltjes integral of F with
respect to G.

Proof. By Theorem 3.3, the function fG is C−integrable on [a, b].
Since F is continuous and G is AC on [a, b],

(L)
∫ b

a
FG′ =

∫ b

a
FdG.

Hence,

(C)
∫ b

a
fG = F (b)G(b)−

∫ b

a
FdG.

Theorem 3.5. Let f : [a, b] → R be C−integrable on [a, b] and let
F (x) = (C)

∫ x
a f for each x ∈ [a, b]. If G : [a, b] → R is an ACGc function

of bounded variation on [a, b], then fG is C−integrable on [a, b] and

(C)
∫ b

a
fG = F (b)G(b)−

∫ b

a
FdG.

Proof. Since F is ACGc on [a, b], FG is ACGc on [a, b] by Theorem
3.2. Hence, (FG)′ is C−integrable on [a, b]. Since F is bounded and
measurable, FG′ is Lebesgue integrable on [a, b]. Since fG = (FG)′ −
FG′ almost everywhere on [a, b], fG is C−integrable on [a, b] and hence
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fG is Henstock integrable on [a, b]. By [8, Theorem 12.21],

(C)
∫ b

a
fG = (H)

∫ b

a
fG

= F (b)G(b)−
∫ b

a
FdG.
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