THE INTEGRATION BY PARTS FOR THE C-INTEGRAL

Jae Myung Park*, Deok Ho Lee**, Ju Han Yoon***, and Young Hyun Yu****

Abstract. In this paper, we define the C-integral and prove the integration by parts formula for the C-integral.

1. Introduction and preliminaries

It is well-known [8] that the integration by parts formula is valid for the Lebesgue, Denjoy, Perron, and Henstock integrals. In this paper, we prove the integration by parts formula for the C-integral. Throughout this paper, $I_{0}=[a, b]$ is a compact interval in R. Let $D=\left\{\left(I_{i}, \xi_{i}\right)\right\}_{i=1}^{n}$ be a finite collection of non-overlapping tagged intervals of I_{0} and let δ be a positive function on I_{0}. We say that D is
(a) a δ - fine McShane partition of I_{0} if $\cup_{i=1}^{n} I_{i}=I_{0}, I_{i} \subset\left(\xi_{i}-\right.$ $\left.\delta\left(\xi_{i}\right), \xi_{i}+\delta\left(\xi_{i}\right)\right)$ and $\xi_{i} \in I_{o}$ for all $i=1,2, \ldots, n$,
(b) a δ - fine C_{ϵ}-partition of I_{0} if it is a δ - fine McShane partition of I_{0} and satisfying

$$
\sum_{i=1}^{n} \operatorname{dist}\left(\xi_{i}, I_{i}\right)<\frac{1}{\epsilon},
$$

where $\operatorname{dist}\left(\xi_{i}, I_{i}\right)=\inf \left\{\left|t-\xi_{i}\right|: t \in I_{i}\right\}$.
Given a δ-fine partition $D=\left\{\left(I_{i}, \xi_{i}\right)\right\}_{i=1}^{n}$ we write

$$
S(f, D)=\sum_{i=1}^{n} f\left(\xi_{i}\right)\left|I_{i}\right|,
$$

[^0]whenever $f: I_{0} \rightarrow R$.

2. Properties of the C-integral

We present the definition of the C-integral.
Definition 2.1. [2] A function $f: I_{0} \rightarrow R$ is C-integrable if there exists a real number A such that for each $\epsilon>0$ there is a positive function $\delta(\xi): I_{0} \rightarrow R^{+}$such that

$$
|S(f, D)-A|<\epsilon
$$

for each δ-fine C_{ϵ}-partition $D=\left\{\left(I_{i}, \xi_{i}\right)\right\}_{i=1}^{n}$ of I_{0}. The real number A is called the C-integral of f on I_{0}. and we write $A=\int_{I_{0}} f$ or $A=$ (C) $\int_{I_{0}} f$.

The function f is C-integrable on the set $E \subset I_{0}$ if the function $f \chi_{E}$ is C-integrable on I_{0}, we write $\int_{E} f=\int_{I_{0}} f \chi_{E}$.

We can easily get the following two theorems.
Theorem 2.2. A function $f: I_{0} \rightarrow R$ is C-integrable if and only if for each $\epsilon>0$ there is a positive function $\delta(\xi): I_{0} \rightarrow R^{+}$such that

$$
\left|S\left(f, D_{1}\right)-S\left(f, D_{2}\right)\right|<\epsilon
$$

for arbitrary δ-fine C_{ϵ}-partitions D_{1} and D_{2} of I_{0}.
Theorem 2.3. Let $f: I_{0} \rightarrow R$. Then
(1) If f is C-integrable on I_{0}, then f is C-integrable on every subinterval of I_{0}.
(2) If f is C-integrable on each of the intervals I_{1} and I_{2}, where I_{1} and I_{2} are non-overlapping and $I_{1} \cup I_{2}=I_{0}$, then f is C-integrable on I_{0} and $\int_{I_{1}} f+\int_{I_{2}} f=\int_{I_{0}} f$.

The following theorem shows that the C-integral is linear.
Theorem 2.4. Let f and g be C-integrable functions on I_{0}. Then (1) αf is C-integrable on I_{0} and $\int_{I_{0}} \alpha f=\alpha \int_{I_{0}} f$ for each $\alpha \in R$, (2) $f+g$ is C-integrable on I_{0} and $\int_{I_{0}}(f+g)=\int_{I_{0}} f+\int_{I_{0}} g$.

Definition 2.5. Let $F: I_{0} \rightarrow R$ and let E be a subset of I_{0}.
(a) F is said to be $A C_{c}$ on E if for each $\epsilon>0$ there is a constant $\eta>0$ and a positive function $\delta: I_{0} \rightarrow R^{+}$such that $\sum_{i}\left|F\left(I_{i}\right)\right|<\epsilon$ for each δ-fine partial C_{ϵ}-partition $D=\left\{\left(I_{i}, \xi_{i}\right)\right\}$ of I_{0} satisfying $\xi_{i} \in E$ and $\sum_{i}\left|I_{i}\right|<\eta$.
(b) F is said to be $A C G_{c}$ on E if E can be expressed as a countable union of sets on each of which F is $A C_{c}$.

ThEOREM 2.6. [13] If a function $f: I_{0} \rightarrow R$ C-integrable on I_{0} if and only if there is an $A C G_{c}$ function F on I_{0} such that $F^{\prime}=f$ almost everywhere on I_{0}.

3. The integration by parts for the C-integral

To prove the integration by parts for the C-integral, we need the following two theorems.

Theorem 3.1. If F is $A C G_{c}$ on $[a, b]$, then F is continuous on $[a, b]$.
Proof. Let $[a, b]=\cup_{n=1}^{\infty} E_{n}$ where F is $A C_{c}$ on each E_{n}. Let $c \in[a, b]$ and choose an index n such that $c \in E_{n}$. Let $\epsilon>0$. Since F is $A C_{c}$ on E_{n}, there exist a positive number $\eta>0$ and a positive function δ : $[a, b] \rightarrow \mathbb{R}^{+}$such that $\sum_{i}\left|F\left(I_{i}\right)\right|<\epsilon$ for each δ-fine partial C_{ϵ}-partition $D=\left\{\left(\xi_{i}, I_{i}\right)\right\}_{i=1}^{n}$ of $[a, b]$ satisfying $\sum_{i}\left|I_{i}\right|<\eta$ and $\xi_{i} \in E_{n}$. Let $r=$ $\min \{\delta(c), \eta\}$. Suppose that $x \in(c-r, c+r) \cap[a, b]$. Then $([c, x], c)$ $(\operatorname{or}([x, c], c))$ is a δ-fine partial C_{ϵ}-partition with $|x-c|<\eta$. Hence, $|F(x)-F(c)|<\epsilon$. It follows that F is continuous at c.

Theorem 3.2. If F and G are $A C G_{c}$ on $[a, b]$, then $F G$ is $A C G_{c}$ on $[a, b]$.

Proof. Since F and G are continuous on $[a, b]$ by Theorem 3.1, there exist real numbers M_{1} and M_{2} with $M_{1}, M_{2} \geq 1$ such that $|F(t)| \leq M_{1}$ and $|G(t)| \leq M_{2}$ for each $t \in[a, b]$. Since F is $A C G_{c}$ on $[a, b]$, we have $[a, b]=\cup_{n=1}^{\infty} E_{n}$ and F is $A C_{c}$ on each E_{n}. Since G is $A C G_{c}$ on $[a, b]$, we have $[a, b]=\cup_{k=1}^{\infty} A_{k}$ and G is $A C_{c}$ on each A_{k}. then $[a, b]=\cup_{n=1}^{\infty} \cup_{k=1}^{\infty}\left(E_{n} \cap A_{k}\right)$.

To show that $F G$ is $A C_{c}$ on each $E_{n} \cap A_{k}$, fix n and k. Let $\epsilon>0$. Since F is $A C_{c}$ on E_{n}, there exist a constant $\eta_{1}>0$ and a positive function $\delta_{1}:[a, b] \rightarrow \mathbb{R}^{+}$such that

$$
\sum_{i=1}^{n}\left|F\left(I_{i}\right)\right|<\frac{\epsilon}{2 M_{2}}
$$

for each δ_{1}-fine partial $M c S h a n e$ partition $\left\{\left(x_{i}, I_{i}\right)\right\}_{i=1}^{p}$ of $[a, b]$ satisfying $\sum_{i=1}^{p} \operatorname{dist}\left(x_{i}, I_{i}\right)<\frac{2 M_{2}}{\epsilon}$ and $\sum_{i}\left|I_{i}\right|<\eta_{1}$ and $x_{i} \in E_{n}$. Since G
is $A C_{c}$ on A_{k}, there exist a constant $\eta_{2}>0$ and a positive function $\delta_{2}:[a, b] \rightarrow \mathbb{R}^{+}$such that

$$
\sum_{j=1}^{n}\left|G\left(J_{j}\right)\right|<\frac{\epsilon}{2 M_{1}}
$$

for each δ_{2}-fine partial McShane partition $\left\{\left(y_{j}, J_{j}\right)\right\}_{j=1}^{q}$ of $[a, b]$ satisfying $\sum_{j=1}^{q} \operatorname{dist}\left(y_{j}, J_{j}\right)<\frac{2 M_{1}}{\epsilon}$ and $\sum_{j}\left|J_{j}\right|<\eta_{2}$ and $y_{j} \in A_{k}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and let $\eta=\min \left\{\eta_{1}, \eta_{2}\right\}$. Let $D=\left\{\left(\xi_{i},\left[c_{i}, d_{i}\right]\right\}_{i=1}^{m}\right.$ be a δ-fine partial McShane partition satisfying $\sum_{i=1}^{m} \operatorname{dist}\left(\xi_{i},\left[c_{i}, d_{i}\right]\right)<$ $\frac{1}{\epsilon}$ and $\sum_{i}\left(d_{i}-c_{i}\right)<\eta$ and $\xi_{i} \in E_{n} \cap A_{k}$. Then, since $\sum_{i=1}^{m} \operatorname{dist}\left(\xi_{i},\left[c_{i}, d_{i}\right]\right)$ $<\frac{2 M_{1}}{\epsilon}$ and $\sum_{i=1}^{m} \operatorname{dist}\left(\xi_{i},\left[c_{i}, d_{i}\right]\right)<\frac{2 M_{2}}{\epsilon}$, we have

$$
\begin{aligned}
& \sum_{i=1}^{m}\left|F\left(d_{i}\right) G\left(d_{i}\right)-F\left(c_{i}\right) G\left(c_{i}\right)\right| \\
\leq & \sum_{i=1}^{m}\left|F\left(d_{i}\right) G\left(d_{i}\right)-F\left(c_{i}\right) G\left(d_{i}\right)\right|+\sum_{i=1}^{m}\left|F\left(c_{i}\right) G\left(d_{i}\right)-F\left(c_{i}\right) G\left(c_{i}\right)\right| \\
= & \sum_{i=1}^{m}\left|G\left(d_{i}\right)\right|\left|F\left(d_{i}\right)-F\left(c_{i}\right)\right|+\sum_{i=1}^{m}\left|F\left(c_{i}\right)\right|\left|G\left(d_{i}\right)-G\left(c_{i}\right)\right| \\
\leq & M_{2} \sum_{i=1}^{m}\left|F\left(d_{i}\right)-F\left(c_{i}\right)\right|+M_{1} \sum_{i=1}^{m}\left|G\left(d_{i}\right)-G\left(c_{i}\right)\right| \\
< & M_{2} \frac{\epsilon}{2 M_{2}}+M_{1} \frac{\epsilon}{2 M_{1}}=\epsilon .
\end{aligned}
$$

Hence, $F G$ is $A C_{c}$ on $E_{n} \cap A_{k}$.

Theorem 3.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be C-integrable on $[a, b]$ and let $F(x)=(C) \int_{a}^{x} f$ for each $x \in[a, b]$. If $G:[a, b] \rightarrow \mathbb{R}$ is $A C$ on $[a, b]$, then $f G$ is C-integrable on $[a, b]$ and

$$
\text { (C) } \int_{a}^{b} f G=F(b) G(b)-(L) \int_{a}^{b} F G^{\prime} .
$$

Proof. Since F is $A C G_{c}$ on $[a, b]$ and the $A C$ function G is $A C_{c}$ on $[a, b], F G$ is $A C G_{c}$ on $[a, b]$ by Theorem 3.1. Hence, $(F G)^{\prime}$ is C-integrable on $[a, b]$. Since F is bounded and measurable, $F G^{\prime}$ is Lebesgue integrable on $[a, b]$. Since $f G=(F G)^{\prime}-F G^{\prime}$ almost everywhere on $[a, b], f G$ is C-integrable on $[a, b]$ and

$$
\begin{aligned}
(C) \int_{a}^{b} f G & =(C) \int_{a}^{b}(F G)^{\prime}-(L) \int_{a}^{b} F G^{\prime} \\
& =F(b) G(b)-(L) \int_{a}^{b} F G^{\prime}
\end{aligned}
$$

Corollary 3.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be C-integrable on $[a, b]$ and let $F(x)=(C) \int_{a}^{x} f$ for each $x \in[a, b]$. If $G:[a, b] \rightarrow \mathbb{R}$ is $A C$ on $[a, b]$, then $f G$ is C-integrable on $[a, b]$ and

$$
(C) \int_{a}^{b} f G=F(b) G(b)-\int_{a}^{b} F d G
$$

where the second integral is the Riemann - Stieltjes integral of F with respect to G.

Proof. By Theorem 3.3, the function $f G$ is C-integrable on $[a, b]$. Since F is continuous and G is $A C$ on $[a, b]$,

$$
(L) \int_{a}^{b} F G^{\prime}=\int_{a}^{b} F d G
$$

Hence,

$$
(C) \int_{a}^{b} f G=F(b) G(b)-\int_{a}^{b} F d G
$$

ThEOREM 3.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be C-integrable on $[a, b]$ and let $F(x)=(C) \int_{a}^{x} f$ for each $x \in[a, b]$. If $G:[a, b] \rightarrow \mathbb{R}$ is an $A C G_{c}$ function of bounded variation on $[a, b]$, then $f G$ is C-integrable on $[a, b]$ and

$$
\text { (C) } \int_{a}^{b} f G=F(b) G(b)-\int_{a}^{b} F d G
$$

Proof. Since F is $A C G_{c}$ on $[a, b], F G$ is $A C G_{c}$ on $[a, b]$ by Theorem 3.2. Hence, $(F G)^{\prime}$ is C-integrable on $[a, b]$. Since F is bounded and measurable, $F G^{\prime}$ is Lebesgue integrable on $[a, b]$. Since $f G=(F G)^{\prime}-$ $F G^{\prime}$ almost everywhere on $[a, b], f G$ is C-integrable on $[a, b]$ and hence
$f G$ is Henstock integrable on $[a, b]$. By [8, Theorem 12.21],

$$
\begin{aligned}
(C) \int_{a}^{b} f G & =(H) \int_{a}^{b} f G \\
& =F(b) G(b)-\int_{a}^{b} F d G
\end{aligned}
$$

References

[1] B. Bongiorno, Un nvovo interale il problema dell primitive, Le Matematiche, 51 (1996), no. 2, 299-313.
[2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesque integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), no. 1, 117-126.
[3] A. M. Bruckner, R. J. Fleissner, and J. Fordan, The minimal integral which includeds Lebesque integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293.
[4] S. J. Chao, B. S. Lee, G. M. Lee, and D. S. Kim, Denjoy-type integrals of Banach-valued functions, Comm. Korean. Math. Soc. 13 (1998), no. 2, 307316.
[5] D. H. Fremlin The Henstock and McShane integrals of vector-valued functions, Illinois J. Math. 38 (1994), 471-479.
[6] D. H. Fremlin The McShane, PU and Henstock integrals of Banach valued functions, Cze. J. Math. 52 (127), (2002), 609-633.
[7] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127-147.
[8] R. A. Gordon, The Integrals of Lebegue, Denjoy, Perron, and Henstock, Graduate Studies in Math. 4 Amer.Math.Soc. (1994).
[9] R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
[10] R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, 1991.
[11] C. K. Park, On Denjoy-McShane-Stieltjes integral, Commun. Korean. Math. Soc. 18 (2003), no. 4, 643-652.
[12] J. M. Park and D. H. Lee, The Denjoy extension of the Riemann and McShane integrals, Cze J. Math. 50 (2000), no. 125, 615-625.
[13] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol.XXXIV, (2002), 143-153
[14] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, 2005.
[15] L. P. Yee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.

\author{

*
 Department of Mathematics
 Chungnam National University
 Daejeon 305-764, Republic of Korea
 E-mail: parkjm@cnu.ac.kr
 **
 Department of Mathematics Education
 Kongju National University
 Kongju 314-701, Republic of Korea
 E-mail: dhlee2@kongju.ac.kr

 Department of Mathematics Education
 Chungbuk National University
 Chungju 360-763, Republic of Korea
 E-mail: yoonjh@cbucc.chungbuk.ac.kr

 Department of Mathematics
 Chungnam National University
 Daejon 305-764, Republic of Korea
 E-mail: ryy1220@naver.com
}

[^0]: Received August 04, 2008; Accepted August 14, 2009.
 2000 Mathematics Subject Classification: Primary 26A39; Secondary 28B05.
 Key words and phrases: McShane partition, C_{ϵ}-partition, C-integral, $A C G_{c^{-}}$ function.

 Correspondence should be addressed to Jae Myung Park, parkjm@cnu.ac.kr.
 *This study was financially supported by research fund of Chungnam National Univesity in 2008.

