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ON THE STATISTICALLY COMPLETE FUZZY
NORMED LINEAR SPACE.

GIL SEOB RHIE*, IN AH HWANG**, AND JEONG HEE KiMm***

ABSTRACT. In this paper, we introduce the notion of the statisti-
cally complete fuzzy norm on a linear space. And we consider some
relations between the fuzzy statistical completeness and ordinary
completeness on a linear space.

1. Introduction

The notions of fuzzy vector spaces and fuzzy topological vector spaces
were introduced in Katsaras and Liu [6]. These ideas were modified by
Katsaras [4], and in [5] Katsaras defined the fuzzy norm on a vector
space. In [7] Krishna and Sarma discussed the generation of a fuzzy
vector topology from an ordinary vector topology on a vector space.
Also Krishna and Sarma [8] observed the convergence of sequence of
fuzzy points. Rhie et al.[12] introduced the notion of fuzzy a-Cauchy
sequence of fuzzy points and fuzzy completeness.

In this paper, we firstly observe some properties relative to the sta-
tistically convergent sequences in a normed linear space. Secondly, we
introduce the notion of the statistically complete fuzzy norm using the
statistical convergence of sequences on a linear space. And we consider
some relations between the fuzzy statistical completeness and the ordi-
nary completeness on a linear space.
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2. Preliminaries

Throughout this paper, X is a vector space over the field K (R or C).
Fuzzy subsets of X are denoted by Greek letters in general. y 4 denotes
the characteristic function of the set A.

DEFINITION 2.1. [6] For two fuzzy subset p; and ug of X, the fuzzy
subset 11 + po is defined by

(1 + p2)(z) = sup  min{u(z1), p2(z2)}

r1+To=2

And for a scalar t of K and a fuzzy subset u of X, the fuzzy subset tu
is defined by

w(x/t) if t#0
(tu)(z)=4¢ O if t=0 and z#0
supyex () if ¢t=0 and x=0.

DEFINITION 2.2. [4] u € I is said to be

1. convex if  tpu+(1—t)u<p foreachte|0,]1]
2. balanced if tp<p foreachte K with|t|<1
3. absorbing if supeso tp(x) =1 for all z € X.

DEFINITION 2.3. [4] Let (X,7) be a topological space and w(1) =
{f:(X,7) = [0,1] | f is lower semicontinuous}. Then w(r) is a fuzzy
topology on X. This topology is called the fuzzy topology generated
by 7 on X. The fuzzy usual topology on K means the fuzzy topology
generated by the usual topology of K.

DEFINITION 2.4. [4] A fuzzy linear topology on a vector space X over
K is a fuzzy topology on X such that the two mappings

+ : X xX-—X, (x,y) >z +y
KxX— X, (t,x) = tx

are continuous when K has the fuzzy usual topology. A linear space
with a fuzzy linear topology is called a fuzzy topological linear space or
a fuzzy topological vector space.

DEFINITION 2.5. [4] Let x be a point in a fuzzy topological space
X. A family F of neighborhoods of z is called a base for the system
of all neighborhoods of x if for each neighborhood p of x and each
0 < 0 < p(x), there exists p1 € F with py < pand py(x) > 6.
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DEFINITION 2.6. [5] A fuzzy seminorm on X is a fuzzy set p in X
which is convex, balanced and absorbing. If in addition in fi~q tp(z) = 0
for every nonzero x, then p is called a fuzzy norm.

THEOREM 2.7. [5] If p is a fuzzy seminorm on X, then the family
B,={0N(tp) |0< 0 <1, t>0} isa base of zero for a fuzzy linear
topology 7,. The fuzzy topology 7, is called the fuzzy topology induced
by the fuzzy seminorm p . And a linear space equipped with a fuzzy
seminorm (resp. fuzzy norm) is called a fuzzy seminormed (resp. fuzzy
normed) linear space.

DEFINITION 2.8. [7] Let p be a fuzzy seminorm on X. P.: X — R,
is defined by P.(z) = A{t > 0| tp(z) > €} for each 0 < e < 1.

THEOREM 2.9. [7] The seminorm P, is a seminorm for each € € (0,1).
Further P, is a norm on X for each 0 < e < 1 if and only if p is a fuzzy
norm on X.

THEOREM 2.10. [11] A metric space (X, d) is complete if and only if
for any nested sequence A; D Ay D --- of nonempty closed sets of X
such that diameter A, — 0, NpeczAn # 0.

3. Statistical convergence on a normed linear space.

In [2], H. Fast introduced an extension of the usual concept of sequen-
tial limits which he called statistical convergence. In [14] I. J. Schoenberg
gave some basic properties of statistical convergence and also studied the
concept as a summability method. In [15], one may find a resent trend
for this topics. In this section, we prove that every statistical Cauchy
sequence on a Banach space is statistically convergent ; as an extension
of Fridy’s [3] result to a normed linear space.

DEFINITION 3.1. [15] The natural density of a positive integer set K
is defined by §(K) = lim, .o + | {k € K : k < n} |, where | {k € K :
k < n} | is the number of elements of K not exceeding n.

It is clear that for a finite set K, we have §(K) = 0. The natural
density may not exist for each set K and is different from zero which
means 0(K) > 0. Besides that, §(K¢) =1 — 6(K) where K° means the
complement of K.

NoTATION. For facilitation, we introduce the following notation: if
< xp > is a sequence such that x; satisfies property P for all k except a
set of natural density zero (equivalently for all k in a positive integer set
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with natural density one), then we say that zj, satisfies P for “almost
all k7, and we abbreviate this by “a.a. k.”

DEFINITION 3.2. The sequence < zp > on a normed linear space is
statistically convergent to the vector x provided that for each € > 0,

1
lim — |[{ken:| zr—z|>€}|=0,
n—oo N
i.e.,
(%) |z —x||<€e a.a. k.

In this case we write st — limx, = .

Example [3] Define z; = x if k is a square and z; = 0 otherwise.
Then | {k < n:xp # 0} |</n, so st —limay = 0. Note that we could
have assigned any values whatsoever to x; when k is a square, and we
would still have st — limx, = 0. It is clear that if the inequality in
(*) holds for all but finitely many k, then limz; = z. It follows that
limx, = z implies st — limx; = 2. As most convergence theories, we
introduce the statistical analogue of the Cauchy convergence criterion.

DEerFINITION 3.3. The sequence < x, > on a normed linear space
is statistical Cauchy sequence if for every € > 0 there exists a number
N(= N(e)) such that

|z —an ||[<€e a.a. k,
i.e.,

1
lim — | {k<n:|zp—2any|>¢€}|=0,

n—oo N

THEOREM 3.4. Every statistically convergent sequence is a statistical
Cauchy sequence on a normed linear space.

Proof. Suppose st — limz, = x and € > 0. Then || z; — z [|< €/2
a.a. k and if N is chosen so that || zxy — x ||< €/2 then we have

l2op —an [<[[zx—z | + |2y —2 |
< €/2+¢€/2 a.a. k.
Hence, < xj > is a statistically Cauchy sequence. O

THEOREM 3.5. For every statistical Cauchy sequence < xj > on a
complete normed linear space, there is a convergent sequence < y >
such that xp =y a.a. k.
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Proof. Let < xp, > be a statistical Cauchy sequence. Then we can
choose N so that the closed ball C' = {z € X :|| zy—x ||< 1} contains z,
a.a. k. Also we can choose M so that C' = {x € X :|| xp — 2 ||< 1/2}
contains z;, a.a. k. We assert that C; = C N C’ contains z;, a.a. k.

For,

{k<n:zp,¢CNC'}

={k<n:xp ¢ CYU{k<n:xz ¢ C'},

SO
1
limg|{k§n:xk¢CﬂC’}]
1 1
< lim E|{k§n:xk¢0}|—|—limﬁ|{l~c§n:xk§é0’}|:0.

Therefore C] is a closed set of diameter less than or equal to 1 that
contains xy a.a. k. Now we proceed by choosing N(2) so that C” =
{z € X :|| zy(2) — 7 ||< 1/4} contains z; a.a. k, and by the preceding
argument Co = C7 N C” contains xp, a.a. k, and Cy has the diameter
less than or equal to 1/2. Continuing inductively we construct a sequence
{Cn}20_, of closed sets such that for each m, Cp, O Cyy1, the diameter
of C,, is not greater than 2'~™, and z;, € C,, a.a. k. By Theorem
2.10, there is a vector y such that NY°_,C,, = {y}. Using the fact that
zr € Cn a.a. k. we choose an increasing positive integer sequence
{Tn}3_, such that

1 1
(%) g\{kﬁniﬂfk%Cm}KE if n>Th,.
Now define a subsequence z of < xj > consisting of terms xj such that

k > T; and
if Ty <k<Tpy1 then xp ¢ Cpp.

Next define a sequence < y, > by

Jy if 1z is a term of z,
Yk = { Tk otherwise

Then limy, = y; for, if € > 1/m > 0 and k > T, then either xj is

a term of z, which means yr = y, or yp = x € Cp, and || yp — y ||<

diameter of C,, < 2'™™. We also assert that zj = y; a.a. k. To verify
this we observe that if T,,, <n < Tj,4+1 then

{k<n:yp#zr} C{k <n:azp ¢ Cnl,
so by (x
1

)
1
n m

1
[k <nipAm}|< | {k<nio ¢ Cn}l<
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Hence, the limit as n — oo is 0 and xx = yr a.a. k. This completes
the proof. ]

THEOREM 3.6. If < xp > Is a sequence on a Banach space for which
there is a convergent sequence < yj > such that xp = yr a.a. k, then
it is a statistically convergent sequence.

Proof. Let i = yr a.a. kand limy, = L. Suppose € > 0. Then for
each n,

{k<n:lzx— L= ¢}

Clk<n:apFyt U{k<n:|ye — L[> e}

since limy, = L, the latter set contains a fixed number of integers, say
[ = I(€). Therefore

1
lim — |[{k<n:zx—L|>¢€}]
n—oo n

< limn_,oo% | {k <n:xp # y} | —i—lim% = 0 because zp = yr a.a.
k. Hence, || 2, — L ||[< € a.a. k, so the proof is complete.
O

4. Fuzzy statistical convergence and fuzzy statistical com-
pleteness.

In this section, we introduce the notion of a statistically complete
fuzzy norm on a linear space. And we consider some relations between
the fuzzy statistical completeness and the ordinary completeness. Now,
we define the statistical convergence of sequences in a fuzzy normed
linear space.

DEFINITION 4.1. Let (X, p) be a fuzzy normed linear space. A se-
quence < xp > C X is said to statistically converge to x € X if for
every t > 0 and 0 < € < 1, there exists a positive integer set K with
natural density one such that & € K implies tp(x —x) > 1 —¢,
ie,tp(xy —z)>1—€ a.a k.

THEOREM 4.2. Let (X, p) be a fuzzy normed linear space. A sequence
< xp > C X statistically converges to x € X if and only if for every
t>0and0<e<l, Pi_(zp—2x)<t a.a k.
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Proof. Let t > 0 and € € (0,1) be given. Since < xj > statistically
converges to x, there exists a positive integer set K with natural density
one such that

v €K implies Sp(zp—z)>1—c¢
= Pz, —z)<i<t aa k.

For the converse, let ¢ > 0 and € > 0 be given. Then

P_(z,—2)<t aa. k

= t'p(xy —x)>1—€ aa. k
for some t' € (Pi_c(zp — x),1)
= tp(zn —z) > tp(xy, —2)>1—€ aa. k.

This completes the proof.
O

The next definition of the statistical Cauchy sequence in a fuzzy
normed linear space is an extension of the fuzzy Cauchy sequence.

DEFINITION 4.3. Let (X, p) be a fuzzy normed linear space. A se-
quence < xp > C X is a statistical Cauchy sequence if and only if for
every t > 0 and 0 < € < 1, there exists a positive integer set K with
natural density one such that k,l € K implies tp(xp —x;) > 1 — ¢,
ie,tp(xp —x)>1—€ a.a kL

THEOREM 4.4. Let (X, p) be a fuzzy normed linear space. A sequence
< xp > C X is a statistical Cauchy sequence if and only if for every
t>0and0<e<1l,P_(xxg—x) <t aa Kkl

Proof. The proof is similar to that of Theorem 4.2. We omit it.
O

The following theorem is easily verified with elementary skill from
Theorem 4.2. and Theorem 4.4.

THEOREM 4.5. Every statistically convergent sequence in a fuzzy
normed linear space is a statistical Cauchy sequence.

Now, we introduce the statistically complete fuzzy norm using the
statistical Cauchy sequence defined above.

DEFINITION 4.6. A fuzzy normed linear space (X, p) is said to be
fuzzy statistically complete if every statistical Cauchy sequence in X
statistically converges to a point in X.
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LEMMA 4.7. Let (X, || - ||) be a normed linear space and B the closed
unit ball of X. Then every statistical Cauchy sequence in the fuzzy
normed linear space (X, xg) is a statistical Cauchy sequence with respect
to the ordinary norm.

Proof. Let < z;, > C X be a statistical Cauchy sequence on (X, x5)
and § > 0. Since < xj > is a statistical Cauchy sequence, for this § and
for every 0 < e < 1, there exists a positive integer set K with natural
density one such that k,! € K implies

%XB(xk — .lel) >1—c¢

== xB(R(xr —z))>1—€¢  aa. k
= xB(3(xr —21)) =1 aa k'l
= |zp—a || <$<6  aa kL
Therefore < xj, > is a statistical Cauchy sequence in (X, | - ||).
This prove the lemma.
U
THEOREM 4.8. Let (X, || - ||) be a Banach space. Then the fuzzy

normed linear space (X, xp) Is fuzzy statistically complete where B is
the closed unit ball of X.

Proof. Let < xp > be a statistically Cauchy sequence in (X, xp).
Then it is a statistical Cauchy sequence with respect to the ordinary
norm || - || by the above lemma. Since (X, || - ||) is a Banach space, there
exists an x € X such that zj statistically converges to x by Theorem
3.5 and 3.6. Now, we show that < xj > statistically converges to this
zin (X,xp). Let t > 0 and 0 < € < 1. Then there exists a positive
integer set K with natural density one such that

ke K implies |zp—x| <t

— | L(zp—2) | <1 aa k
= xe(3(zk—2) =1 aa. k
= txp(zp—z)>1—€¢ aa. k
That is < x > statistically converges to z, therefore (X, xp) is fuzzy
statistically complete. This completes the proof. O

COROLLARY 4.9. The field K (R or C) with the fuzzy topology gen-
erated by the usual topology on K is a fuzzy statistically complete fuzzy
normed linear space.

DEFINITION 4.10. [5] Two fuzzy seminorms p1, p2 on X are said to
be equivalent iff 7,, = 7,,.
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THEOREM 4.11. [12] Let (X,|| - ||) be a normed linear space. If
p Iis a lower semi-continuous fuzzy norm on X, and has the bounded
support: {x € X| p(x) > 0} is bounded, then p is equivalent to the
fuzzy norm xp where B is the closed unit ball of X.

By Theorem 4.8. and 4.11 we get the following theorem.

THEOREM 4.12. If X is a Banach space and p is a lower semicon-
tinuous fuzzy norm on X having the bounded support, then the fuzzy
normed linear space (X, p) is fuzzy statistically complete.

1]
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